【題目】如圖,在直角坐標(biāo)系內(nèi),O為原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)B在第一象限內(nèi),BO=5,sin∠BOA=. 求:(1)點(diǎn)B的坐標(biāo);(2)cos∠BAO的值.
【答案】(1)點(diǎn)B的坐標(biāo)為(4,3);(2)cos∠BAO=.
【解析】試題分析:(1)作BH⊥OA, 垂足為H,在Rt△OHB中,根據(jù)銳角三角函數(shù)的定義及已知條件求得BH的長(zhǎng),再根據(jù)勾股定理求得OH的長(zhǎng),即可得點(diǎn)B的坐標(biāo);(2)先求得AH的長(zhǎng),在Rt△AHB中,根據(jù)勾股定理求得AB的長(zhǎng),根據(jù)銳角三角函數(shù)的定義即可求得cos∠BAO的值.
試題解析:
(1)如圖所示,作BH⊥OA, 垂足為H.
在Rt△OHB中,∵BO=5,sin∠BOA=,∴BH=3,∴OH=4,∴點(diǎn)B的坐標(biāo)為(4,3).
(2)∵OA=10,OH=4,∴AH=6.在Rt△AHB中,∵BH=3,∴AB=,∴cos∠BAO== .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為( )
A.2B.2.5或3.5
C.3.5或4.5D.2或3.5或4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是一個(gè)邊長(zhǎng)為1的等邊三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,……Bn-1Bn是△ABn-2Bn-1的高,則B4B5的長(zhǎng)是________,猜想Bn-1Bn的長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一座拱橋是圓弧形,它的跨度AB=60米,拱高PD=18米.
(1)求圓弧所在的圓的半徑r的長(zhǎng);
(2)當(dāng)洪水泛濫到跨度只有30米時(shí),要采取緊急措施,若拱頂離水面只有4米,即PE=4米時(shí),是否要采取緊急措施?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CD平分∠ACB,∠1=∠2.
(1)求證:DE∥AC;
(2)若∠3=30°,∠B=25°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測(cè)量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測(cè)得雕像頂端A的仰角為60°,求雕像AB的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形的邊、在坐標(biāo)軸上,點(diǎn)坐標(biāo),將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)角度,得到正方形,交線段于點(diǎn),的延長(zhǎng)線交線段于點(diǎn),連、.
(1)求證:;
(2)求的度數(shù),并判斷線段、、之間的數(shù)量關(guān)系,說明理由;
(3)當(dāng)時(shí),求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是正三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點(diǎn)作一個(gè)60°角,角兩邊分別交AB,AC邊于M,N兩點(diǎn),連接MN.
(1)探究:線段BM,MN,NC之間的關(guān)系,并加以證明。
(2)若點(diǎn)M是AB的延長(zhǎng)線上的一點(diǎn),N是CA的延長(zhǎng)線上的點(diǎn),其它條件不變,請(qǐng)你再探線段BM,MN,NC之間的關(guān)系,在圖②中畫出圖形,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校七年級(jí)開展征文活動(dòng),征文主題只能從“愛國(guó)”“敬業(yè)”“誠(chéng)信”“友善”四個(gè)主題中選擇一個(gè),七年級(jí)每名學(xué)生按要求都上交了一份征文,學(xué)校為了解選擇各種征文主題的學(xué)生人數(shù),隨機(jī)抽取了部分征文進(jìn)行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)將上面的條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,選擇“愛國(guó)”主題所對(duì)應(yīng)的圓心角是多少度?
(3)如果該校七年級(jí)共有1200名考生,請(qǐng)估計(jì)選擇以“友善”為主題的七年級(jí)學(xué)生有多少名?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com