【題目】1)某學(xué)校學(xué)習(xí)落實數(shù)學(xué)興趣小組遇到這樣一個題目:如圖1,在中,點在線段上,,,,求的長.經(jīng)過數(shù)學(xué)小組成員討論發(fā)現(xiàn),過點,交的延長線于點,通過構(gòu)造就可以解決問題(如圖2)請回答:,

2)請參考以上解決思路,解決問題:如圖在四邊形中對角線相交于點,,,.求的長.

【答案】1;(2

【解析】

(1)根據(jù)平行線的性質(zhì)可得出∠ADB=OAC=75°,結(jié)合∠BOD=COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=ADB,由等角對等邊可得出;
(2)過點BBEADAC于點E,同(1)可得出AE,在RtAEB中,利用勾股定理可求出BE的長度,再在RtCAD中,利用勾股定理可求出DC的長,此題得解.

: (1) ,

.

.

,

故答案為:;.

(2)過點于點,如圖所示.

.

,

中,,即,解得:

中,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+2x+3

1)求它的對稱軸和頂點坐標(biāo);

2)求該拋物線與x軸的交點坐標(biāo);

3)建立平面直角坐標(biāo)系,畫出這條拋物線的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+4k30,

1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?

2)當(dāng)RtABC的斜邊a,且兩條直角邊的長bc恰好是這個方程的兩個根時,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,AC3,BC4,點DAB邊上一點,且AD1,點P從點C出發(fā),沿射線CA以每秒1個單位長度的速度運動,以CP、DP為鄰邊作CPDE.設(shè)CPDE和△ABC重疊部分圖形的面積為S(平方單位),點P的運動時間為t(秒)(t0

1)連結(jié)CD,求CD的長;

2)當(dāng)CPDE為菱形時,求t的值;

3)求St之間的函數(shù)關(guān)系式;

4)將線段CD沿直線CE翻折得到線段C′D′.當(dāng)點D′落在△ABC的邊上時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以圓O為圓心,半徑為1的弧交坐標(biāo)軸于AB兩點,P是弧上一點(不與AB重合),連接OP,設(shè)∠POB=α,則點P的坐標(biāo)是

A. sinα,sinα B. cosαcosα C. cosα,sinα D. sinα,cosα

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把兩塊同樣大小的含角的三角板的直角重合并按圖1方式放置,點是兩塊三角板的邊的交點,將三角板繞點按順時針方向旋轉(zhuǎn)到圖2的位置,若,則點所走過的路程是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為正方形網(wǎng)格,每個小正方形的邊長均為1,各個小正方形的頂點叫做格點,請在下面的網(wǎng)格中按要求分別畫圖,使得每個圖形的頂點均在格點上.

1)在圖中畫一個以為一邊的菱形,且菱形的面積等于20

2)在圖中畫一個以為對角線的正方形,并直接寫出正方形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖,點EF分別為正方形ABCD的邊BC、CD上一點,AC、BD交于點O,且∠EAF45°,AE,AF分別交對角線BD于點MN,則有以下結(jié)論:①AOM∽△ADF;②EFBE+DF;③∠AEB=∠AEF=∠ANM;④SAEF2SAMN,以上結(jié)論中,正確的個數(shù)有( )個.

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+3b+1x+b3a0),若存在實數(shù)m,使得點Pm,m)在該拋物線上,我們稱點Pm,m)是這個拋物線上的一個和諧點

1)當(dāng)a2,b1時,求該拋物線的和諧點;

2)若對于任意實數(shù)b,拋物線上恒有兩個不同的和諧點A、B

求實數(shù)a的取值范圍;

若點AB關(guān)于直線y=﹣x﹣(+1)對稱,求實數(shù)b的最小值.

查看答案和解析>>

同步練習(xí)冊答案