(2002•四川)已知x1,x2是一元二次方程4kx2-4kx+k+1=0的兩個實數(shù)根.
(1)是否存在實數(shù)k,使(2x1-x2)(xl-2x2)=成立?若存在,求出k的值;若不存在,請說明理由.
(2)求使的值為整數(shù)的實數(shù)k的整數(shù)值.
【答案】分析:(1)把(2x1-x2)(xl-2x2)=,即2(x1+x22-9x1x2=-1.5,根據(jù)一元二次方程根與系數(shù)的關(guān)系求得方程兩根的和與兩根的積代入即可得到關(guān)于k的方程,即可求得k的值,然后判斷是否滿足即可;
(2)根據(jù)一元二次方程的根與系數(shù)的關(guān)系可得=4-,根據(jù)的值為整數(shù),以及k的范圍即可確定k的取值.
解答:解:(1)根據(jù)題意,得
△=(-4k)2-4×4k(k+1)=-16k≥0.
解得k≤0.
又∵k≠0,∴k<0.
由(2x1-x2)(xl-2x2)=
2(x12+x22)-5x1x2=-1.5.
2(x1+x22-9x1x2=-1.5.
2-9×=-1.5
18k+18=28k,
解得k=1.8.
經(jīng)檢驗k=1.8是方程-=-1.5的解.
∵k<0,∴不存在實數(shù)k.
(2)原式=-2=-2=-4=-4,
∴k+1=1或-1,或2,或-2,或4,或-4
解得k=0或-2,1,-3,3,-5.
∵k<0.
∴k=-2,-3或-5.
點評:解決本題的關(guān)鍵是把所求的代數(shù)式整理成與根與系數(shù)有關(guān)的形式,注意所求值的取舍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2002•四川)已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實數(shù)時,拋物線與直線有兩個交點;
(2)設(shè)坐標(biāo)原點為O,拋物線與直線的交點從左至右分別為A、B、當(dāng)直線與拋物線兩點的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2002•四川)已知函數(shù)y=-的圖象過點(-2,3),那么下列各點在函數(shù)y=kx-2的圖象上的是( )
A.(4,1)
B.(,-1)
C.(-,-11)
D.(-3,-21)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(01)(解析版) 題型:選擇題

(2002•四川)已知函數(shù)y=-的圖象過點(-2,3),那么下列各點在函數(shù)y=kx-2的圖象上的是( )
A.(4,1)
B.(,-1)
C.(-,-11)
D.(-3,-21)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年四川省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2002•四川)已知拋物線y=x2和直線y=(m2-1)x+m2
(1)當(dāng)m為何實數(shù)時,拋物線與直線有兩個交點;
(2)設(shè)坐標(biāo)原點為O,拋物線與直線的交點從左至右分別為A、B、當(dāng)直線與拋物線兩點的橫坐標(biāo)之差為3時,求△AOB中的OB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年四川省中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2002•四川)已知函數(shù)y=-的圖象過點(-2,3),那么下列各點在函數(shù)y=kx-2的圖象上的是( )
A.(4,1)
B.(,-1)
C.(-,-11)
D.(-3,-21)

查看答案和解析>>

同步練習(xí)冊答案