【題目】如圖,拋物線yax)(x+3)交x軸于點(diǎn)AB,交y軸于點(diǎn)CtanCAO

1)求a值;

2)點(diǎn)P為第一象限內(nèi)拋物線上一點(diǎn),點(diǎn)P的橫坐標(biāo)為t,連接PAPC,設(shè)△PAC的面積為S,求St之間的關(guān)系式;

3)在(2)的條件下,點(diǎn)Q在第一象限內(nèi)的拋物線上(點(diǎn)Q在點(diǎn)P的上方),過點(diǎn)PPEAB,垂足為E,點(diǎn)D在線段AQ上,點(diǎn)F在線段AO上連接ED、DFDEAP于點(diǎn)G,若∠QDF+QDE180°,∠DFA+AED90°,PGPEPGEF32,求點(diǎn)P的坐標(biāo).

【答案】1a=﹣;(2St2+t;(3)點(diǎn)P1,3

【解析】

1)由題意可求點(diǎn)A,點(diǎn)B坐標(biāo),由銳角三角函數(shù)可求點(diǎn)C坐標(biāo),代入解析式可求解a的值;

2)點(diǎn)P(t,﹣t2t+4),由面積關(guān)系可求解;

3)如圖3,延長(zhǎng)AQ,EP交于點(diǎn)H,連接GF,由四點(diǎn)共圓可證點(diǎn)A,點(diǎn)D,點(diǎn)G,點(diǎn)F四點(diǎn)共圓,可得∠ADF=∠AGF,∠QDE=∠AFG,設(shè)PGPE3a,EF2a,由勾股定理可求a,可求點(diǎn)P坐標(biāo),代入解析式可求解.

解:(1)∵拋物線ya(x)(x+3)交x軸于點(diǎn)AB,

0a(x)(x+3)

x1,x2=﹣3,

∴點(diǎn)A(﹣30),點(diǎn)B(,0),

AO3,

tanCAO

CO4,

∴點(diǎn)C(0,4)

4a(0)(0+3),

a=﹣

2)∵y=﹣(x)(x+3)

y=﹣x2x+4,

∵點(diǎn)P的橫坐標(biāo)為t,

∴點(diǎn)P(t,﹣t2t+4),

S [4+(﹣t2x+4)]t+×3×4×(t+3)(﹣t2t+4)=t2+t

3)如圖3,延長(zhǎng)AQ,EP交于點(diǎn)H,連接GF,

∵∠QDF+QDE180°,且∠QDE+ADE180°,

∴∠ADE=∠QDF,

∴∠ADF=∠QDE

∵∠DFA+AED90°,∠AED+DEP90°,

∴∠AFD=∠DEP

∴∠HAE=∠AHE,且HEAE,

∴∠HAE=∠AHE45°,

AEEHt+3,

PEPG

∴∠PGE=∠PEG,

∴∠PGE=∠AFD=∠AGD

∴點(diǎn)A,點(diǎn)D,點(diǎn)G,點(diǎn)F四點(diǎn)共圓,

∴∠ADF=∠AGF,∠QDE=∠AFG,

∴∠AGF=∠AFG,

AFAG

設(shè)PGPE3a,EF2a,

AFt+32aAGAPt+32a+3at+3+a

AP2PE2+AE2

∴(t+3+a)29a2+(t+3)2,

a,

3a

∴點(diǎn)P(t,)

=﹣t2t+4

t1,t=﹣3(不合題意舍去)

∴點(diǎn)P(13)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)是線段上的動(dòng)點(diǎn),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連接.若已知,設(shè)兩點(diǎn)間的距離為兩點(diǎn)間的距離為兩點(diǎn)間的距離為.(若同學(xué)們打印的BC的長(zhǎng)度如不是,請(qǐng)同學(xué)們重新畫圖、測(cè)量)

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),分別對(duì)自變量x的變化而變化的規(guī)律進(jìn)行了探究,下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

1)按照下表中自變量的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了的幾組對(duì)應(yīng)值,如下表:

0

1

2

3

4

5

6

7

8

7.03

6.20

5.44

4.76

4.21

3.85

3.73

3.87

4.26

5.66

4.32

1.97

1.59

2.27

3.43

4.73

寫出的值.(保留1位小數(shù)

2)在同一平面直角坐標(biāo)系中,描出補(bǔ)全后的表中各組數(shù)值所對(duì)應(yīng)的點(diǎn),并畫出函數(shù)的圖象;

3)結(jié)合函數(shù)圖像,解決問題:

①當(dāng)在線段上時(shí),的長(zhǎng)度約為________;

②當(dāng)為等腰三角形時(shí),的長(zhǎng)度約為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七巧板是我國古老的益智玩具,受到全世界人的追捧.下圖是由一副“現(xiàn)代智力七巧板經(jīng)無縫拼接且沒有重疊的軸對(duì)稱花朵型圖案,直線AB為對(duì)稱軸,其中①②③是直徑為1的圓與半圓,為直角梯形,為等腰直角三角形,⑥⑦是有一組對(duì)邊平行且銳角皆為45°的拼板.若已知的周長(zhǎng)是AB3倍,的周長(zhǎng)是AB5倍,則圖中線段AC的長(zhǎng)度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2+3b+1x+b3a0),若存在實(shí)數(shù)m,使得點(diǎn)Pm,m)在該拋物線上,我們稱點(diǎn)Pmm)是這個(gè)拋物線上的一個(gè)和諧點(diǎn)

1)當(dāng)a2,b1時(shí),求該拋物線的和諧點(diǎn);

2)若對(duì)于任意實(shí)數(shù)b,拋物線上恒有兩個(gè)不同的和諧點(diǎn)AB

求實(shí)數(shù)a的取值范圍;

若點(diǎn)A,B關(guān)于直線y=﹣x﹣(+1)對(duì)稱,求實(shí)數(shù)b的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,直線PQ垂直平分AC,與邊AB交于E,連接CE,過點(diǎn)CCF平行于BAPQ于點(diǎn)F,連接AF

(1)求證:AED≌△CFD;

(2)求證:四邊形AECF是菱形.

(3)若AD=3,AE=5,則菱形AECF的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明參加某個(gè)智力競(jìng)答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)求助沒有用(使用求助可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).

(1)如果小明第一題不使用求助,那么小明答對(duì)第一道題的概率是  

(2)如果小明將求助留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.

(3)從概率的角度分析,你建議小明在第幾題使用求助.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,AC=20cm,BC=15cm,現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB向點(diǎn)B方向運(yùn)動(dòng),如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.求:

1)當(dāng)t=3秒時(shí),這時(shí),P,Q兩點(diǎn)之間的距離是多少?

2)若△CPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

3)當(dāng)t為多少秒時(shí),以點(diǎn)CP,Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于兩點(diǎn)(點(diǎn)位于點(diǎn)的左側(cè)),與軸相交于點(diǎn)是拋物線的頂點(diǎn),直線是拋物線的對(duì)稱軸,且點(diǎn)的坐標(biāo)為

1)求拋物線的解析式.

2)已知為線段上一個(gè)動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn).若的面積為

①求之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

②當(dāng)取得最值時(shí),求點(diǎn)的坐標(biāo).

3)在(2)的條件下,在線段上是否存在點(diǎn),使為等腰三角形?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABD=90°,AD= 5,BD=3,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB- BC以每秒個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)A、BC重合).在點(diǎn)P運(yùn)動(dòng)的過程中,過點(diǎn)PAB所在直線的垂線.交邊AD或邊CD于點(diǎn)Q,以PQ為一邊作矩形PQMN,且QM=2MNBDPQ的同側(cè),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t()

(1)當(dāng)t= 5時(shí),求線段CP的長(zhǎng);

(2)求線段PQ的長(zhǎng)(用含t的代數(shù)式表示)

(3)當(dāng)點(diǎn)M落在BD上時(shí),求t的值;

(4)當(dāng)矩形PQMNABCD重疊部分圓形為五邊形時(shí),直接寫出t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案