【題目】如圖,在平面直角坐標(biāo)系中,AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4 cm,OA=5 cm,DE=2 cm,動點P從點A出發(fā),以每秒1 cm的速度,沿ABC路線向點C運動;動點Q從點O出發(fā),以每秒2 cm的速度,沿OED路線向點D運動.若P,Q兩點同時出發(fā),其中一點到達(dá)終點時,運動停止.
(1)直接寫出B,C,D三個點的坐標(biāo);
(2)當(dāng)P,Q兩點出發(fā)3 s時,求三角形PQC的面積;
(3)設(shè)兩點運動的時間為t s,用含t的式子表示運動過程中三角形OPQ的面積.
【答案】(1)B(4,5),C(4,2),D(8,2);(2)2;(3) .
【解析】
(1)根據(jù)平面直角坐標(biāo)系寫出各點的坐標(biāo)即可;
(2)先求出點P、Q的坐標(biāo),再求出CP、CQ,然后根據(jù)三角形的面積公式列式計算即可得解;
(3)由題意點P從A運動到C用時需要7秒,點Q從O運動到D用時需要5秒,根據(jù)其中一點到達(dá)終點時,運動停止,可知運動時間t的取值范圍為0≤t≤5,然后分兩種情況討論即可.兩種情況分別為①0≤t<4,此時點P在AB上,點Q在OE上;②4≤t≤5,此時點P在BC上,點Q在DE上.
(1)∵AB∥CD∥x軸,BC∥DE∥y軸,且AB=CD=4,OA=5,DE=2,
4+4=8,
∴B(4,5),C(4,2),D(8,2);
(2)當(dāng)P,Q兩點運動3 s時,如圖1,此時點P(3,5),Q(6,0),
因為C(4,2),過點P作PM⊥x軸,延長BC交x軸于點N,延長DC交PM于點K,
則有M(3,0),N(4,0),K(3,2),
所以QM=MQ=3,CK=MN=1,PK=BC=3,CN=NQ=2,
所以三角形PQC的面積=×3×5-×1×3-×2×2-2×1=2;
(3)點P運動的路徑長為AB+BC=4+3=7,用時需要7秒,
點Q運動的路徑長為OE+DE=8+2=10,用時需要5秒,
根據(jù)其中一點到達(dá)終點時,運動停止,可知運動時間t的取值范圍為0≤t≤5;
①當(dāng)0≤t<4時(如圖2),OA=5,OQ=2t,
S三角形OPQ=OQOA=×2t×5=5t;
②當(dāng)4≤t≤5時(如圖3),OE=8,EM=9-t,PM=4,MQ=17-3t,EQ=2t-8,
S三角形OPQ=S梯形OPME-S三角形PMQ-S三角形OEQ
=×(4+8)×(9-t)-×4×(17-3t)-×8×(2t-8)
=52-8t,
綜上,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小區(qū)將原來400平方米的正方形場地改建成300平方米的長方形場地,且長和寬之比為3∶2.如果把原來正方形場地的鐵柵欄圍墻利用起來圍成新場地的長方形圍墻,那么這些鐵柵欄是否夠用?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組乘一輛檢修車沿一段東西方向鐵路檢修,規(guī)定向東走為正,向西走為負(fù),小組的出發(fā)地記為M,某天檢修完畢時,行走記錄(單位:千米)如下:
+12,-5,-9,+10,-4,+15,-9,+3,-6,-3,-7
(1)問收工時,檢修小組距出發(fā)地M有多遠(yuǎn)?在東側(cè)還是西側(cè)?
(2)若檢修車每千米耗油0.2升,求從出發(fā)到收工時檢修車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉(zhuǎn),DM,DN分別與邊AB,AC交于E,F兩點,下列結(jié)論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結(jié)論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一條道路上,甲車從A地到B地,乙車從B地到A地,乙先出發(fā),圖中的折線段表示甲、乙兩車之間的距離y(千米)與行駛時間x(小時)的函數(shù)關(guān)系的圖象.下列說法錯誤的是( )
A.乙先出發(fā)的時間為0.5小時
B.甲的速度是80千米/小時
C.甲出發(fā)0.5小時后兩車相遇
D.甲到B地比乙到A地早 小時
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(2,3)和點B(0,2),點A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點A按逆時針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點C,則點C的坐標(biāo)為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是2018年12月份的日歷,我們選擇其中的方框部分,將每個方框部分中4個位置上的數(shù)交叉求平方和,再相減,例如:(32+112)-(42+102)=14,(212+292)-(222+282)=14,不難發(fā)現(xiàn)結(jié)果都是14.
(1)今天是12月12日,請你寫一個含今天日期在內(nèi)的類似部分的算式;
(2)請你利用整式的運算對以上規(guī)律加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D為射線CB上一個動點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,過點E作EF∥BC,交直線AC于點F,連接CE.
(1)如圖①,若∠BAC=60°,按邊分類:△CEF是 ____________ 三角形;
(2)若∠BAC<60°.
①如圖②,當(dāng)點D在線段CB上移動時,判斷△CEF的形狀并證明;
②當(dāng)點D在線段CB的延長線上移動時,△CEF是什么三角形?請在圖③中畫出相應(yīng)的圖形,寫出結(jié)論并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx﹣4的圖象與直線l2:y=x+1的圖象平行.
(1)求直線l1的圖象與x軸,y軸所圍成圖形的面積;
(2)求原點到直線l1的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com