(本小題滿分8分)按右圖所示的流程,輸入一個(gè)數(shù)據(jù)x,根據(jù)y與x的關(guān)系式就輸出一個(gè)數(shù)據(jù)y,這樣可以將一組數(shù)據(jù)變換成另一組新的數(shù)據(jù),要使任意一組都在20~100(含20和100)之間的數(shù)據(jù),變換成一組新數(shù)據(jù)后能滿足下列兩個(gè)要求:
(a)新數(shù)據(jù)都在60~100(含60和100)之間;
(b)新數(shù)據(jù)之間的大小關(guān)系與原數(shù)據(jù)之間的大小關(guān)系一致,即原數(shù)據(jù)大的對(duì)應(yīng)的新數(shù)據(jù)也較大。
(1)若y與x的關(guān)系是y=x+p(100-x),請(qǐng)說(shuō)明:當(dāng)p=時(shí),這種變換滿足上述兩個(gè)要求;
(2)若按關(guān)系式y(tǒng)=a(x-h(huán))2+k (a>0)將數(shù)據(jù)進(jìn)行變換,請(qǐng)寫出一個(gè)滿足上述要求的這種關(guān)系式。(不要求對(duì)關(guān)系式符合題意作說(shuō)明,但要寫出關(guān)系式得出的主要過(guò)程)
(1)當(dāng)P=時(shí),y=x+,即y=。
∴y隨著x的增大而增大,即P=時(shí),滿足條件(Ⅱ)---------------2分
又當(dāng)x=20時(shí),y=60;當(dāng)x=100時(shí)y=100。原數(shù)據(jù)都在20~100之間,所以新數(shù)據(jù)都在60~100之間,即滿足條件(Ⅰ),綜上,當(dāng)P=時(shí),這種變換滿足要求;-4分
(2)本題是開(kāi)放性問(wèn)題,答案不唯一。若所給出的關(guān)系式滿足:(a)h≤20;(b)若x=20,100時(shí),y的對(duì)應(yīng)值m,n能落在60~100之間,則這樣的關(guān)系式都符合要求。
如取h=20,y=,∵a>0,∴當(dāng)20≤x≤100時(shí),y隨著x的增大
令x=20,y=60,得k=60 ①
令x=100,y=100,得a×802+k=100 ②
由①②解得, ∴。---------------8分
解析:
此題可用函數(shù)思想解決。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分10分)
甲乙兩車同時(shí)從A地出發(fā),以各自的速度勻速向B地行駛.甲車先到達(dá)B地,停留一小時(shí)后按原路以另一速度勻速返回,直到兩車相遇.乙車的速度為60km/h,兩車間距離y(km)與乙車行駛時(shí)間x(h)之間的函數(shù)圖象如下.
1.(1)將圖中( )填上適當(dāng)?shù)闹,并求甲車從A到B的速度.
2.(2)求從甲車返回到與乙車相遇過(guò)程中y與x的函數(shù)關(guān)系式,自變量取值范圍。
3.(3) 求出甲車返回時(shí)行駛速度及AB兩地的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市前洲中學(xué)九年級(jí)中考模擬考試數(shù)學(xué)卷 題型:解答題
(本小題滿分8分)按右圖所示的流程,輸入一個(gè)數(shù)據(jù)x,根據(jù)y與x的關(guān)系式就輸出一個(gè)數(shù)據(jù)y,這樣可以將一組數(shù)據(jù)變換成另一組新的數(shù)據(jù),要使任意一組都在20~100(含20和100)之間的數(shù)據(jù),變換成一組新數(shù)據(jù)后能滿足下列兩個(gè)要求:
(a)新數(shù)據(jù)都在60~100(含60和100)之間;
(b)新數(shù)據(jù)之間的大小關(guān)系與原數(shù)據(jù)之間的大小關(guān)系一致,即原數(shù)據(jù)大的對(duì)應(yīng)的新數(shù)據(jù)也較大。
(1)若y與x的關(guān)系是y=x+p(100-x),請(qǐng)說(shuō)明:當(dāng)p=時(shí),這種變換滿足上述兩個(gè)要求;
(2)若按關(guān)系式y(tǒng)=a(x-h(huán))2+k (a>0)將數(shù)據(jù)進(jìn)行變換,請(qǐng)寫出一個(gè)滿足上述要求的這種關(guān)系式。(不要求對(duì)關(guān)系式符合題意作說(shuō)明,但要寫出關(guān)系式得出的主要過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省無(wú)錫市九年級(jí)中考模擬考試數(shù)學(xué)卷 題型:選擇題
(本小題滿分8分)按右圖所示的流程,輸入一個(gè)數(shù)據(jù)x,根據(jù)y與x的關(guān)系式就輸出一個(gè)數(shù)據(jù)y,這樣可以將一組數(shù)據(jù)變換成另一組新的數(shù)據(jù),要使任意一組都在20~100(含20和100)之間的數(shù)據(jù),變換成一組新數(shù)據(jù)后能滿足下列兩個(gè)要求:
(a)新數(shù)據(jù)都在60~100(含60和100)之間;
(b)新數(shù)據(jù)之間的大小關(guān)系與原數(shù)據(jù)之間的大小關(guān)系一致,即原數(shù)據(jù)大的對(duì)應(yīng)的新數(shù)據(jù)也較大。
(1)若y與x的關(guān)系是y=x+p(100-x),請(qǐng)說(shuō)明:當(dāng)p=時(shí),這種變換滿足上述兩個(gè)要求;
(2)若按關(guān)系式y(tǒng)=a(x-h(huán))2+k (a>0)將數(shù)據(jù)進(jìn)行變換,請(qǐng)寫出一個(gè)滿足上述要求的這種關(guān)系式。(不要求對(duì)關(guān)系式符合題意作說(shuō)明,但要寫出關(guān)系式得出的主要過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com