【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示:
(1)寫出點A,B,C三點的坐標(biāo);
(2)若△ABC各頂點的橫坐標(biāo)不變,縱坐標(biāo)都乘以﹣1,請你在同一坐標(biāo)系中描出對應(yīng)的點A',B',C',并依次連接這三點,所得的△A'B'C'與原△ABC的位置關(guān)系是什么?
(3)在x軸上作出一點P,使得AP平分∠BAC.(保留作圖痕跡,不寫作法)
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的邊OA、OC分別在x軸、y軸上,點B的坐標(biāo)為(m,n)(m<0,
n>0),E點在邊BC上,F點在邊OA上.將矩形OABC沿EF折疊,點B正好與點O重合,雙曲線過點E.
(1) 若m=-8,n =4,直接寫出E、F的坐標(biāo);
(2) 若直線EF的解析式為,求k的值;
(3) 若雙曲線過EF的中點,直接寫出tan∠EFO的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由矩形(非正方形)各內(nèi)角平分線所圍成的四邊形一定是( )
A. 平行四邊形 B. 矩形 C. 菱形 D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長為4,以AB為直徑的圓交BC于點F,以C為圓心,CF的長為半徑作圓,D是⊙C上一動點,E為BD的中點,當(dāng)AE最大時,BD的長為( 。
A. 2 B. 2 C. 2+1 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品現(xiàn)在的售價為每件60元,每個星期可賣出300件,市場調(diào)查反映:如調(diào)整價格,每漲價1元,每個星期要少賣出10件;每降價1元,每個星期可多賣出20件.已知商品進(jìn)價為每件40元,設(shè)每件商品的售價為x元(且x為正整數(shù)),每個星期的銷售量為y件.
(1)求y與x的函數(shù)關(guān)系并直接寫出自變量x的取值范圍;
(2)設(shè)每星期的銷售利潤為W,請直接寫出W與x的關(guān)系式;
(3)每件商品的售價定為多少元時,每個星期可獲得最大利潤?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如圖所示A(﹣2,1),B(﹣4,1),C(﹣1,4).
(1)△ABC向上平移一個單位,再向左平移一個單位得到△A1B1C1,那么C的對應(yīng)點C1的坐標(biāo)為_____;P點到△ABC三個頂點的距離相等,點P的坐標(biāo)為______;
(2)△ABC關(guān)于第一象限角平分線所在的直線作軸對稱變換得到△A2B2C2,那么點B的對應(yīng)點B2的坐標(biāo)為______;
(3)△A3B3C3是△ABC繞坐標(biāo)平面內(nèi)的Q點順時針旋轉(zhuǎn)得到的,且A3(1,0),B3(1,2),C3(4,﹣1),點Q的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進(jìn)行了探究,下面是小穎的探究過程,請你補(bǔ)充完整.
(1)列表:
x | … | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | -2 | -1 | 0 | 1 | 0 | -1 | k | … |
①____;
②若,,,為該函數(shù)圖象上不同的兩點,則____;
(2)描點并畫出該函數(shù)的圖象;
(3)①根據(jù)函數(shù)圖象可得:該函數(shù)的最大值為____;
②觀察函數(shù)的圖象,寫出該圖象的兩條性質(zhì)________________________;_____________________;
③已知直線與函數(shù)的圖象相交,則當(dāng)時,的取值范圍為是____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com