【題目】解下列方程:
(1)2x2﹣x=1
(2)x2+4x+2=0.

【答案】
(1)

解:2x2﹣x﹣1=0,

(2x+1)(x﹣1)=0,

2x+1=0或x﹣1=0,

所以x1=﹣ ,x2=1


(2)

解:△=42﹣4×2=8,

x= =﹣2± ,

所以x1=﹣2+ ,x2=﹣2﹣


【解析】(1)先把方程化為一般式,然后利用因式分解法解方程;(2)利用求根公式法解方程.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解配方法(左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒(méi)問(wèn)題.左邊分解右合并,直接開(kāi)方去解題),還要掌握公式法(要用公式解方程,首先化成一般式.調(diào)整系數(shù)隨其后,使其成為最簡(jiǎn)比.確定參數(shù)abc,計(jì)算方程判別式.判別式值與零比,有無(wú)實(shí)根便得知.有實(shí)根可套公式,沒(méi)有實(shí)根要告之)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1=ax+b的圖象與反比例 函數(shù)y2= 的圖象交于M,N兩點(diǎn).
(1)利用圖中條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)觀察圖象,比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對(duì)角線的交點(diǎn)與原點(diǎn)O重合.在邊AB從小于AD到大于AD的變化過(guò)程中,若矩形ABCD的周長(zhǎng)始終保持不變,則經(jīng)過(guò)動(dòng)點(diǎn)A的反比例函數(shù)y= (k≠0)中k的值的變化情況是(
A.一直增大
B.一直減小
C.先增大后減小
D.先減小后增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC、EC分別為四邊形ABCD和EFCG的對(duì)角線,點(diǎn)E在△ABC內(nèi),∠CAE+∠CBE=90°,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),連接BF.
(1)求證:△CAE∽△CBF;
(2)若BE=1,AE=2,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC中,AC=BC,∠ACB=90°,直角∠DFE的頂點(diǎn)F是AB中點(diǎn),兩邊FD,F(xiàn)E分別交AC,BC于點(diǎn)D,E兩點(diǎn),當(dāng)∠DFE在△ABC內(nèi)繞頂點(diǎn)F旋轉(zhuǎn)時(shí)(點(diǎn)D不與A,C重合),給出以下個(gè)結(jié)論:①CD=BE ②四邊形CDFE不可能是正方形 ③△DFE是等腰直角三角形 ④S四邊形CDFE= SABC , 上述結(jié)論中始終正確的有(
A.①②③
B.②③④
C.①③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程:x2﹣2(m+1)x+m2+5=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若原方程的兩個(gè)實(shí)數(shù)根為x1、x2 , 且滿(mǎn)足x12+x22=|x1|+|x2|+2x1x2 , 求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A1B1C,連結(jié)AA1 , 若∠AA1B1=15°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,A是⊙O上一點(diǎn),半徑OC的延長(zhǎng)線與過(guò)點(diǎn)A的直線交于B點(diǎn),OC=BC,AC= OB.
(1)求證:AB是⊙O的切線;
(2)若∠ACD=45°,OC=2,求弦CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正六邊形的邊心距為 ,這個(gè)正六邊形的面積為( )
A.2
B.4
C.6
D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案