【題目】二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點,與y軸交于點C.若tanABC=3,一元二次方程ax2+bx+c=0的兩根為-8、2,求二次函數(shù)的解析式

【答案】

【解析】

根據(jù)一元二次方程ax2+bx+c=0的兩根為-8、2可得拋物線與x軸交點坐標為(-8,0)、(2,0),然后分開口向上與開口向下兩種情況分類討論進一步求解即可,

∵二次函數(shù)y=ax2+bx+c的圖象與x軸分別交于A、B兩點,且一元二次方程ax2+bx+c=0的兩根為-8、2,

∴當x=-8時,y=0;x=2時,y=0,

tanABC=3

∴OC=6,

當拋物線開口向上時,C點坐標為(0,-6),

……①

……②

結(jié)合①②可得:,,

∴二次函數(shù)解析式為:

當拋物線開口向下時,C點坐標為(0,6),

……③

……④

結(jié)合③④可得:,,

∴二次函數(shù)解析式為:,

綜上所述,拋物線解析式為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點是第一象限內(nèi)橫坐標為2的一個定點,軸于點,交直線于點,若點是線段上的一個動點,,,點在線段上運動時,點不變,點隨之運動,當點從點運動到點時,則點運動的路徑長是(

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著移動計算技術(shù)和無線網(wǎng)絡(luò)的快速發(fā)展,移動學(xué)習(xí)方式越來越引起人們的關(guān)注,某校計劃將這種學(xué)習(xí)方式應(yīng)用到教育學(xué)中,從全校1500名學(xué)生中隨機抽取了部分學(xué)生,對其家庭中擁有的移動設(shè)備的情況進行調(diào)查,并繪制出如下的統(tǒng)計圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:

)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為   ,圖①中m的值為   

)求本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);

)根據(jù)樣本數(shù)據(jù),估計該校1500名學(xué)生家庭中擁有3臺移動設(shè)備的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,小黃自駕游去了離家156千米的黃石礦博園,右圖是小黃離家的距離y(千米)與汽車行駛時間x(小時)之間的函數(shù)圖象.

1)求小黃出發(fā)0.5小時時,離家的距離;

2)求出AB段的圖象的函數(shù)解析式;

3)小黃出發(fā)1.5小時時,離目的地還有多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖示,在平面直角坐標系中,二次函數(shù))交軸于,在軸上有一點,連接.

1)求二次函數(shù)的表達式;

2)點是第二象限內(nèi)的點拋物線上一動點

①求面積最大值并寫出此時點的坐標;

②若,求此時點坐標;

3)連接,點是線段上的動點.連接,把線段繞著點順時針旋轉(zhuǎn),點是點的對應(yīng)點.當動點從點運動到點,則動點所經(jīng)過的路徑長等于______(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線yax2+bx+c的頂點為B(﹣1,3),與x軸的交點A在點(﹣30)和(﹣2,0)之間,以下結(jié)論:①b24ac0、a+b+c0、2ab0ca3,其中正確的有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是平行四邊形,對角線OBy軸正半軸上,位于第一象限的點A和第二象限內(nèi)的點C分別在雙曲線的一支上,分別過點A、Cx軸的垂線,垂足分別為MN,則有以下的結(jié)論:

陰影部分的面積為;

B點坐標為(06),A點坐標為(2,2),則

AOC時,

OABC是菱形,則兩雙曲線既關(guān)于x軸對稱,也關(guān)于y軸對稱.其中正確的結(jié)論是 ____________(填寫正確結(jié)論的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師將1個黑球和若干個白球放入一個不透明的口袋并攪勻,讓若干學(xué)生進行摸球試驗,每次摸出一個球,放回、攪勻,下表是活動進行中的一組統(tǒng)計數(shù)據(jù),

摸球的次數(shù)n

100

150

200

500

800

1000

摸到黑球的次數(shù)m

23

31

60

130

203

251

摸到黑球的頻率

0.230

0.231

0.300

0.260

0.254

袋中白球的個數(shù)約為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+3經(jīng)過點 B﹣10),C2,3),拋物線與y軸的焦點A,與x軸的另一個焦點為D,點M為線段AD上的一動點,設(shè)點M的橫坐標為t

1)求拋物線的表達式;

2)過點My軸的平行線,交拋物線于點P,設(shè)線段PM的長為1,當t為何值時,1的長最大,并求最大值;(先根據(jù)題目畫圖,再計算)

3)在(2)的條件下,當t為何值時,△PAD的面積最大?并求最大值;

4)在(2)的條件下,是否存在點P,使△PAD為直角三角形?若存在,直接寫出t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案