【題目】在銳角中,,, ,將繞點按逆時針方向旋轉,得到.(1)如圖1,當點在線段的延長線上時,則的度數(shù)為______________度;(2)如圖2,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉過程中,點的對應點是點,則線段長度最小值是_____________.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進的速度,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A(10,0),點B(0,6),點P為BC邊上的動點,將△OBP沿OP折疊得到△OPD,連接CD、AD.則下列結論中:①當∠BOP=45°時,四邊形OBPD為正方形;②當∠BOP=30°時,△OAD的面積為15;③當P在運動過程中,CD的最小值為2﹣6;④當OD⊥AD時,BP=2.其中結論正確的有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形中,是邊上的動點(與點、不重合),且,于點,與的延長線交于點,連接、.
(1)求證:①;②;
(2)若,在點運動過程中,探究:
①線段的長度是否改變?若不變,求出這個定值;若改變,請說明理由;
②當為何值時,為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①是被譽為“川北第一樓”的鳳凰樓,它不僅是廣元市的城標,更是一份承傳文化的載體.李銘和王華同學想借助無人機測量鳳凰樓的高度,如圖②為測量示意圖,他們站在坡度是,坡面長為的斜坡的坡底處操控無人機,無人機從坡頂出發(fā),以的速度,沿仰角的方向爬升,時到達空中的處.
(1)求此時無人機離坡底所在地面的高度;
(2)如圖②,無人機在處測得鳳凰樓頂部的仰角為,底部的俯角為(鳳凰樓與李銘和王華所站坡底在同一水平面),求鳳凰樓的高度.
(結果精確到;參考數(shù)據(jù):,,,)
圖①圖②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形中,,,,是射線上一點,連接,沿將三角形折疊,得三角形.
(1)當時,=_______度;
(2)如圖,當時,求線段的長度;
(3)當點落在平行四邊形的邊上時,直接寫出線段的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C、D為圓上的兩點,OC∥BD,弦AD、BC相交于點E.
(1)求證:;
(2)若CE=1,BE=3,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為米的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設的長度為米,矩形區(qū)域的面積為米.
求證:;
求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
為何值時,有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】飲料廠生產(chǎn)某品牌的飲料成本是每瓶5元,每天的生產(chǎn)量不超過9000瓶.根據(jù)市場調查,以單價8元批發(fā)給經(jīng)銷商,經(jīng)銷商每天愿意經(jīng)銷5000瓶,并且表示單價每降價0.1元,經(jīng)銷商每天愿意多經(jīng)銷500瓶.
(1)求出飲料廠每天的利潤(元)與批發(fā)單價(元)之間的函數(shù)關系式;
(2)批發(fā)單價定為多少元時,飲料廠每天的利潤最大,最大利潤是多少元;
(3)如果該飲料廠要使每天的利潤不低于18750元,且每天的總成本不超過42500元,那么批發(fā)單價應控制在什么范圍.(每天的總成本每瓶的成本每天的經(jīng)銷量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com