某企業(yè)研發(fā)生產(chǎn)一種套裝環(huán)保設(shè)備,計(jì)劃每套成本不高于50萬(wàn)元,且每月的產(chǎn)量不超過(guò)40套.已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價(jià)y1(萬(wàn)元)之間滿足關(guān)系式y(tǒng)l=170-2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2萬(wàn)元)存在如圖所示的一次函數(shù)關(guān)系,
(1)求y2與x之間的函數(shù)關(guān)系式;
(2)求月產(chǎn)量x的范圍;
(3)當(dāng)月產(chǎn)量x(套)為多少時(shí),這種設(shè)備的利潤(rùn)W(萬(wàn)元)最大?最大利潤(rùn)是多少?
(1)設(shè)函數(shù)關(guān)系式為y2=kx+b,把坐標(biāo)(30,1400)(40,1700)代入,
30k+b=1400 40k+b=1700 解得:k=30 b=500
∴函數(shù)關(guān)系式y(tǒng)2=30x+500;

(2)依題意得:500+30x≤50x 解得x≥25,則25≤x≤40;

(3)∵W=x•y1-y2=x(170-2x)-(500+30x)=-2x2+140x-500
∴W=-2(x-35)2+1950
∵35>25,
∴當(dāng)x=35時(shí),W最大=1950(萬(wàn)元).
答:當(dāng)月產(chǎn)量為35件時(shí),利潤(rùn)最大,最大利潤(rùn)是1950萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點(diǎn)A1,A2,A3,…和點(diǎn)C1,C2,C3,…分別在直線y=kx+b(k>0)和x軸上,已知正方形A1B1C1O,正方形A2B2C2C1的面積分別是4和16,則Bn的坐標(biāo)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)A(1,2),B(3,-5),P為x軸上一動(dòng)點(diǎn),求P到A、B的距離之差的絕對(duì)值最大時(shí)P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

受力面積為S(米2)(S為常數(shù),S≠0)的物體,所受的壓強(qiáng)P(帕)與壓力F(牛)的函數(shù)關(guān)系為P=
F
S
,則這個(gè)函數(shù)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-
3
4
x+6
分別交于x軸,y軸于B、A兩點(diǎn),D、E分別是OA、OB的中點(diǎn),點(diǎn)P從點(diǎn)D出沿DE方向運(yùn)動(dòng),過(guò)點(diǎn)P作PQ⊥AB于Q,過(guò)點(diǎn)Q作QROA交OB于R,當(dāng)點(diǎn)Q與B點(diǎn)重合時(shí),點(diǎn)P停止運(yùn)動(dòng).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求PQ的長(zhǎng)度;
(3)是否存在點(diǎn)P,使△PQR為等腰三角形?若存在,請(qǐng)求出所有滿足要求的點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司試銷一種成本單價(jià)為400元/件的新產(chǎn)品,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件)可近似的看作一次函數(shù)y=kx+b的關(guān)系.
(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式.
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本價(jià))為S元.
①試用銷售單價(jià)x表示毛利潤(rùn)S;
②試問(wèn):銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn),最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話.
小麗:如果以10元/千克的價(jià)格銷售,那么每天可售出300千克.
小強(qiáng):如果以13元/千克的價(jià)格銷售,那么每天可獲取利潤(rùn)750元.
小紅:通過(guò)調(diào)查驗(yàn)證,我發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(2)設(shè)該超市銷售這種水果每天獲取的利潤(rùn)為W元,那么當(dāng)銷售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?【利潤(rùn)=銷售量×(銷售單價(jià)-進(jìn)價(jià))】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某公司到果園基地購(gòu)買某種優(yōu)質(zhì)水果,慰問(wèn)醫(yī)務(wù)工作者,果園基地對(duì)購(gòu)買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.
(1)分別寫出該公司兩種購(gòu)買方案的付款y(元)與所購(gòu)買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購(gòu)買量判斷,選擇哪種購(gòu)買方案付款最少?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

王師傅開車通過(guò)邵懷高速公路雪峰山隧道(全長(zhǎng)約為7千米)時(shí),所走路程y(千米)與時(shí)間x(分鐘)之間的函數(shù)關(guān)系的圖象如圖(十四)所示.請(qǐng)結(jié)合圖象,回答下列問(wèn)題:
(1)求王師傅開車通過(guò)雪峰山隧道的時(shí)間;
(2)王師傅說(shuō):“我開車通過(guò)隧道時(shí),有一段連續(xù)2分鐘恰好走了1.8千米”.你說(shuō)有可能嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案