【題目】如圖,在矩形ABCD中,E是AD的中點(diǎn),且若矩形ABCD的周長(zhǎng)為48cm,則矩形ABCD的面積為______.
【答案】128
【解析】
根據(jù)AB=DC,∠A=∠D,AE=DE,利用SAS可判定△ABE≌△DCE,根據(jù)全等三角形的性質(zhì)可得:∠AEB=∠DEC,再根據(jù)BE⊥CE,可得:∠BEC=90°,進(jìn)而可得:∠AEB=∠DEC=45°,
因此∠EBC=∠ECD=45°,繼而可得:AB=AE,DC=DE,即AD=2AB,根據(jù)周長(zhǎng)=48,可求得:BC=16,AB=8,最后根據(jù)矩形面積公式計(jì)算可得:S=16×8=128 cm.
∵AB=DC,∠A=∠D,AE=DE,
∴△ABE≌△DCE(SAS),
∴∠AEB=∠DEC,
∵BE⊥CE,
∴∠BEC=90°,
∵∠AEB+∠BEC+∠DEC=180°,
∴∠AEB=∠DEC=45°,
∴∠EBC=∠ECD=45°,
∴AB=AE,DC=DE,
即AD=2AB,
又∵周長(zhǎng)=48,
∴BC=16,AB=8,
S=16×8=128 cm,
故答案為:128.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)三角形知識(shí)時(shí),發(fā)現(xiàn)如下三個(gè)有趣的結(jié)論:在Rt△ABC中,∠A=90°,BD平分∠ABC,M為直線AC上一點(diǎn),ME⊥BC,垂足為E,∠AME的平分線交直線AB于點(diǎn)F.
(1)如圖①,M為邊AC上一點(diǎn),則BD、MF的位置關(guān)系是 ;
如圖②,M為邊AC反向延長(zhǎng)線上一點(diǎn),則BD、MF的位置關(guān)系是 ;
如圖③,M為邊AC延長(zhǎng)線上一點(diǎn),則BD、MF的位置關(guān)系是 ;
(2)請(qǐng)就圖①、圖②、或圖③中的一種情況,給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線AC,BD相交于O,EF經(jīng)過(guò)點(diǎn)O,分別交AD,BC于E,F,已知ABCD的面積是,則圖中陰影部分的面積是
A. 12 B. 10 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點(diǎn)E,F,BE,CF相交于點(diǎn)G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,寫(xiě)出求BE的長(zhǎng)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線l和點(diǎn)P,給出如下定義:過(guò)點(diǎn)P作x軸,y軸的垂線,分別交直線l于點(diǎn)M,N,若PM+PN≤4,則稱P為直線l的近距點(diǎn),特別地,直線上l所有的點(diǎn)都是直線l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).
(1)當(dāng)直線l的表達(dá)式為y=x時(shí),
①在點(diǎn)A,B,C中,直線l的近距點(diǎn)是 ;
②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;
(2)當(dāng)直線l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線l的近距點(diǎn),直接寫(xiě)出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,,點(diǎn)E為AB邊的中點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于DE對(duì)稱,連接DP、BP、CP,下列結(jié)論:;;;,其中正確的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,,,E、F分別是AB、CD的中點(diǎn)
求證:四邊形AECF是平行四邊形;
是否存在a的值使得四邊形AECF為菱形,若存在求出a的值,若不存在說(shuō)明理由;
如圖,點(diǎn)P是線段AF上一動(dòng)點(diǎn)且
求證:;
直接寫(xiě)出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示∠AOB的紙片,OC平分∠AOB,如圖2把∠AOB沿OC對(duì)折成∠COB(OA與OB重合),從O點(diǎn)引一條射線OE,使∠BOE=∠EOC,再沿OE把角剪開(kāi),若剪開(kāi)后得到的3個(gè)角中最大的一個(gè)角為76°,則∠AOB=_____________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】操作與證明:如圖,把一個(gè)含角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AC、AE、其中AC與EF交于點(diǎn)N,取AF中點(diǎn)M,連接MD、MN.
求證:是等腰三角形;
在的條件下,請(qǐng)判斷MD,MN的數(shù)量關(guān)系和位置關(guān)系,并給出證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com