【題目】計算:
(1)(﹣5)+2 +(﹣)+(﹣2)
(2)
(3) 365(﹣13)+565÷13+1100÷13
(4)﹣22+3×(﹣1)4﹣(﹣4)×2.
【答案】(1)﹣5;(2)﹣22;(3)100;(4)7.
【解析】
(1)將原式去括號后相加減可得答案;
(2)利用乘法的分配律將括號內(nèi)每個數(shù)除以﹣后相加減可得答案;
(3)將原式化為﹣365×+565×+1100×用乘法的分配律計算即可;
(4)先算乘方后算乘法后相加減可得答案.
(1)(﹣5)+2 +(﹣)+(﹣2)
=﹣5+(2﹣2)+(﹣)
=﹣5+0﹣
=﹣5;
(2)(+﹣)÷(﹣)
=(+﹣)×(﹣42)
=×(﹣42)+×(﹣42)﹣×(﹣42)
=﹣35﹣14+27
=﹣22;
(3)365÷(﹣13)+565÷13+1100÷13
=﹣365×+565×+1100×
=(﹣365+565+1100)×
=1300×
=100;
(4)﹣22+3×(﹣1)4﹣(﹣4)×2.
=﹣4+3+8
=7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)組織植樹活動,按年級將七、八、九年級學(xué)生分成三個植樹隊,七年級植樹x棵,八年級種的數(shù)比七年級種的數(shù)的2倍少26棵,九年級種的樹比八年級種的樹的一半多42棵.
(1)請用含x的式子表示三個隊共種樹多少棵.
(2)若這三個隊共種樹423棵,請你求出這三隊各種了多少棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年俄羅斯世界杯組委會對世界杯比賽用球進行抽查,隨機抽取了100個足球,檢測每個足球的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足部分分別用正、負(fù)數(shù)來表示,記錄如表:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣4 | ﹣2 | 0 | 1 | 3 | 6 |
個數(shù) | 10 | 13 | 30 | 25 | 15 | 7 |
(1)平均每個足球的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?用你學(xué)過的方法合理解釋;
(2)若每個足球標(biāo)準(zhǔn)質(zhì)量為420克,則抽樣檢測的足球的總質(zhì)量是多少克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)如圖,在五邊形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.
(1)求證:△ABC≌△AED;
(2)當(dāng)∠B=140°時,求∠BAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,BC=6,E是BA延長線的一點,P是∠EAC的平分線上一個動點,當(dāng)△APC是以AC為腰的等腰三角形時,△APC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】武漢市光谷實驗中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),下列說法錯誤的是( 。
A. 九(1)班的學(xué)生人數(shù)為40 B. m的值為10
C. n的值為20 D. 表示“足球”的扇形的圓心角是70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(﹣4,0),點B的坐標(biāo)是(0,b)(b>0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關(guān)于y軸的對稱點為P′(點P′不在y軸上),連接PP′,P′A,P′C.設(shè)點P的橫坐標(biāo)為a.
(1)當(dāng)b=3時, ①求直線AB的解析式;
②若點P′的坐標(biāo)是(﹣1,m),求m的值;
(2)若點P在第一象限,記直線AB與P′C的交點為D.當(dāng)P′D:DC=1:3時,求a的值;
(3)是否同時存在a,b,使△P′CA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( )
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com