(2012•南平)如圖,已知四邊形ABCD是平行四邊形,若點(diǎn)E、F分別在邊BC、AD上,連接AE、CF,請(qǐng)?jiān)購(gòu)南铝腥齻(gè)備選條件中,選擇添加一個(gè)恰當(dāng)?shù)臈l件.使四邊形AECF是平行四邊形,并予以證明,
備選條件:AE=CF,BE=DF,∠AEB=∠CFD,
我選擇添加的條件是:
BE=DF
BE=DF

(注意:請(qǐng)根據(jù)所選擇的條件在答題卡相應(yīng)試題的圖中,畫(huà)出符合要求的示意圖,并加以證明)
分析:根據(jù)平行四邊形性質(zhì)得出AD∥BC,AD=BC,求出AF∥CE,AF=CE,根據(jù)平行四邊形的判定推出即可.
解答:解:添加的條件是BE=DF.證明如下:
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC,
∵BE=DF,
∴AF=CE,
即AF=CE,AF∥CE,
∴四邊形AECF是平行四邊形,
故答案為:BE=DF.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì)和判定的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生的推理能力,同時(shí)也培養(yǎng)了學(xué)生的分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南平)如圖,△ABC為⊙O的內(nèi)接三角形,AB為⊙O的直徑,點(diǎn)D在⊙O上,∠ADC=68°,則∠BAC=
22
22
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南平)如圖,在山坡AB上種樹(shù),已知∠C=90°,∠A=28°,AC=6米,則相鄰兩樹(shù)的坡面距離AB≈
6.8
6.8
米.(精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南平)如圖,直線l與⊙O交于C、D兩點(diǎn),且與半徑OA垂直,垂足為H,已知OD=2,∠O=60°,
(1)求CD的長(zhǎng);
(2)在OD的延長(zhǎng)線上取一點(diǎn)B,連接AB、AD,若AD=BD,求證:AB是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南平)如圖,在△ABC中,點(diǎn)D、E分別在邊BC、AC上,連接AD、DE,且∠1=∠B=∠C.
(1)由題設(shè)條件,請(qǐng)寫(xiě)出三個(gè)正確結(jié)論:(要求不再添加其他字母和輔助線,找結(jié)論過(guò)程中添加的字母和輔助線不能出現(xiàn)在結(jié)論中,不必證明)
答:結(jié)論一:
AB=AC
AB=AC
;
結(jié)論二:
∠AED=∠ADC
∠AED=∠ADC

結(jié)論三:
△ADE∽△ACD
△ADE∽△ACD

(2)若∠B=45°,BC=2,當(dāng)點(diǎn)D在BC上運(yùn)動(dòng)時(shí)(點(diǎn)D不與B、C重合),
①求CE的最大值;
②若△ADE是等腰三角形,求此時(shí)BD的長(zhǎng).
(注意:在第(2)的求解過(guò)程中,若有運(yùn)用(1)中得出的結(jié)論,須加以證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案