精英家教網 > 初中數學 > 題目詳情
將一個量角器和一個含30度角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.求證:DB∥CF.
分析:由切線的性質證明△BOF為直角三角形,而△FCB為直角三角形,△BOF與△FCB有直角邊BF公共,且BC=OD=OF,證出平行四邊形即可.
解答:證明:∵AB與⊙O相切于點F,
∴∠BFO=90°,
∵∠FBC=90°,
∴∠BFO=∠FBC.
∴OF∥BC,
∵BC=OD,OD=OF,
∴OF=CB.
∴四邊形OBCF是平行四邊形,
∴DB∥CF.
點評:本題考查了切線的性質,全等三角形的判定與性質.關鍵是根據圖形的特點,由切線的性質判斷全等三角形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

將一個量角器和一個含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.
(1)求證:DB∥CF;
(2)當OD=2時,若以O、B、F為頂點的三角形與△ABC相似,求OB.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

將一個量角器和一個含30°角的直角三角板如圖1放置,圖2是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,BC=OD
(1)求證:FC∥DB;
(2)當OD=3,sin∠ABD=
35
時,求AF的長.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

將一個量角器和一個含30度角的直角三角板如圖(1)放置,圖(2)是由它抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD.
(1)求證:DB∥CF;
(2)當OD=2時,若以O、B、F為頂點的三角形與△ABC相似,求弧
EF
的長度.

查看答案和解析>>

科目:初中數學 來源:廣東省模擬題 題型:解答題

將一個量角器和一個含30度角的直角三角板如圖(1)放置,圖(2)是由他抽象出的幾何圖形,其中點B在半圓O的直徑DE的延長線上,AB切半圓O于點F,且BC=OD。
(1)求證:DB∥CF。
(2)當OD=2時,若以O、B、F為頂點的三角形與△ABC相似,求弧的長度。

查看答案和解析>>

同步練習冊答案