已知:如圖,在平面直角坐標(biāo)系中,△ABC是直角三角形,
∠ACB=90°,點(diǎn)A,C的坐標(biāo)分別為A(﹣3,0),C(1,0),tan∠BAC=.
(1)寫出點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)D,連接BD,使得△ADB與△ABC相似(不包括全等),并
求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,如P,Q分別是AB和AD上的動(dòng)點(diǎn),連接PQ,設(shè)AP=DQ=m,
問是否存在這樣的m使得△APQ與△ADB相似?如存在,請(qǐng)求出的m值;
如不存在,請(qǐng)說明理由.
解:(1)B(1,3), (1分)
(2)如圖1,過點(diǎn)B作BD⊥AB,交x軸于點(diǎn)D,
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽R(shí)t△ADB,
∴D點(diǎn)為所求,
又tan∠ADB=tan∠ABC=,
∴CD=BC÷tan∠ADB=3÷,
∴OD=OC+CD=1+=,
∴D( ,0); (4分)
(3)這樣的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如圖1,當(dāng)PQ∥BD時(shí),△APQ∽△ABD,
則=,
解得m=, (6分)
如圖2,當(dāng)PQ⊥AD時(shí),△APQ∽△ADB,
則=,
解得m=. (9分)
故存在m的值是或時(shí),使得△APQ與△ADB相似.(10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)下面給出的數(shù)軸,解答下面的問題:(本題6分)
⑴ 請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)A: B: ;
⑵ 觀察數(shù)軸,與點(diǎn)A的距離為4的點(diǎn)表示的數(shù)是: ;
⑶ 若將數(shù)軸折疊,使得A點(diǎn)與-3表示的點(diǎn)重合,則B點(diǎn)與數(shù) 表示的點(diǎn)重合;
⑷ 若數(shù)軸上M、N兩點(diǎn)之間的距離為2014(M在N的左側(cè)),且M、N兩點(diǎn)經(jīng)過(3)中折疊后互相重合,則M、N兩點(diǎn)表示的數(shù)分別是:M: N: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小明從路燈下,向前走了5米,發(fā)現(xiàn)自己在地面上的影子長(zhǎng)DE是2米,如果小明的身高為1.6米,那么路燈離地面的高度AB是__ __米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在邊長(zhǎng)為1的正方形網(wǎng)格中,有一格點(diǎn)△ABC,已知A、B、C三點(diǎn)的坐標(biāo)分別是A(1,0)、B(2,-1)、C(3,1).
(1) 請(qǐng)?jiān)诰W(wǎng)格圖形中畫出平面直角坐標(biāo)系;
(2) 以原點(diǎn)O為位似中心,將△ABC放大2倍,畫出放大后的△A′B′C′;
(3) 寫出△A′B′C′各頂點(diǎn)的坐標(biāo):A′____,B′____,C′ ___;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
三角形兩邊長(zhǎng)分別為3和6,第三邊是方程的根,則三角形的周長(zhǎng)為( )
A.13 B.15 C.18 D.13或18
4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知銳角△ABC(1)過點(diǎn)A作BC邊的垂線MN,交BC于點(diǎn)D(用尺規(guī)作圖法,保留作圖痕跡,不要求寫作法);(2)在(1)條件下,若BC=5,AD=4, tan∠BAD=,求DC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com