【題目】如圖①,在四邊形ABCD中,AC⊥BD于點(diǎn)E,AB=AC=BD,點(diǎn)M為BC中點(diǎn),N為線(xiàn)段AM上的點(diǎn),且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時(shí),求線(xiàn)段BC的長(zhǎng);
(3)如圖②,若點(diǎn)F為AB的中點(diǎn),連結(jié)FN、FM,求證:△MFN∽△BDC.
【答案】(1)證明見(jiàn)解析;(2);(3)證明見(jiàn)解析.
【解析】(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線(xiàn)合一知AM⊥BC,從而根據(jù)∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;
(2)設(shè)BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;
(3)F是AB的中點(diǎn)知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.
(1)∵AB=AC,
∴∠ABC=∠ACB,
∵M為BC的中點(diǎn),
∴AM⊥BC,
在Rt△ABM中,∠MAB+∠ABC=90°,
在Rt△CBE中,∠EBC+∠ACB=90°,
∴∠MAB=∠EBC,
又∵MB=MN,
∴△MBN為等腰直角三角形,
∴∠MNB=∠MBN=45°,
∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,
∴∠NBE=∠ABN,即BN平分∠ABE;
(2)設(shè)BM=CM=MN=a,
∵四邊形DNBC是平行四邊形,
∴DN=BC=2a,
在△ABN和△DBN中,
∵,
∴△ABN≌△DBN(SAS),
∴AN=DN=2a,
在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,
解得:a=±(負(fù)值舍去),
∴BC=2a=;
(3)∵F是AB的中點(diǎn),
∴在Rt△MAB中,MF=AF=BF,
∴∠MAB=∠FMN,
又∵∠MAB=∠CBD,
∴∠FMN=∠CBD,
∵,
∴,
∴△MFN∽△BDC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,△ABC是等邊三角形,AE=CD,BQ⊥AD于Q,BE交AD于點(diǎn)P,下列說(shuō)法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其中正確的個(gè)數(shù)有( )個(gè)。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形網(wǎng)格中建立如圖所示的平面直角坐標(biāo)系,△ABC的頂點(diǎn)都在格點(diǎn)上,請(qǐng)解答下列問(wèn)題:
(1)①作出△ABC向左平移4個(gè)單位長(zhǎng)度后得到的△A1B1C1, 并寫(xiě)出點(diǎn)C1的坐標(biāo);
②作出△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A2B2C2, 并寫(xiě)出點(diǎn)C2的坐標(biāo);
(2)已知△ABC關(guān)于直線(xiàn)l對(duì)稱(chēng)的△A3B3C3的頂點(diǎn)A3的坐標(biāo)為(-4,-2),請(qǐng)直接寫(xiě)出直線(xiàn)l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推進(jìn)球類(lèi)運(yùn)動(dòng)的發(fā)展,某校組織校內(nèi)球類(lèi)運(yùn)動(dòng)會(huì),分籃球、足球、排球、羽毛球、乒乓球五項(xiàng),要求每位學(xué)生必須參加一項(xiàng)并且只能參加一項(xiàng),某班有一名學(xué)生根據(jù)自己了解的班內(nèi)情況繪制了如圖所示的不完整統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖表中提供的信息,解答下列問(wèn)題:
(1)圖表中m=________,n=________;
(2)若該校學(xué)生共有1000人,則該校參加羽毛球活動(dòng)的人數(shù)約為________人;
(3)該班參加乒乓球活動(dòng)的4位同學(xué)中,有3位男同學(xué)(分別用A,B,C表示)和1位女同學(xué)(用D表示),現(xiàn)準(zhǔn)備從中選出兩名同學(xué)參加雙打比賽,用樹(shù)狀圖或列表法求出恰好選出一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,自左向右,水平擺放一組小球,按照以下規(guī)律排列,如:紅球,黃球,綠球,紅球,黃球,綠球,…嘉琪依次在小球上標(biāo)上數(shù)字1,2,3,4,5,6,…,則從左往右第100個(gè)黃球上所標(biāo)的數(shù)字為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊BC,AB上,且BD=AE,AD與CE交于點(diǎn)F,作CM⊥AD,垂足為M,下列結(jié)論不正確的是( )
A. AD=CE B. MF=CF C. ∠BEC=∠CDA D. AM=CM
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P,點(diǎn)Q分別代表兩個(gè)村莊,直線(xiàn)l代表兩個(gè)村莊中間的一條公路.根據(jù)居民出行的需要,計(jì)劃在公路l上的某處設(shè)置一個(gè)公交站.
(1)若考慮到村莊P居住的老年人較多,計(jì)劃建一個(gè)離村莊P最近的車(chē)站,請(qǐng)?jiān)诠?/span>l上畫(huà)出車(chē)站的位置(用點(diǎn)M表示),依據(jù)是 ;
(2)若考慮到修路的費(fèi)用問(wèn)題,希望車(chē)站的位置到村莊P和村莊Q的距離之和最小,請(qǐng)?jiān)诠?/span>l上畫(huà)出車(chē)站的位置(用點(diǎn)N表示),依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)△ABC,三邊長(zhǎng)為AC=6,BC=8,AB=10,沿AD折疊,使點(diǎn)C落在AB邊上的點(diǎn)E處.
(1)試判斷△ABC的形狀,并說(shuō)明理由.
(2)求線(xiàn)段CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com