【題目】如圖,四邊形內接于,對角線為的直徑,過點作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB,DC,DF.
(1)求證:DF是的切線;
(2)若,求的值.
【答案】(1)證明見解析;(2)tan∠ABD=2.
【解析】
(1)如圖,連接OD,由AC是直徑可得∠ADC=90°,利用直角三角形的性質結合等腰三角形的性質得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,進而得出答案;
(2)由直角三角形兩銳角互余的關系可得∠DAC=∠DCE,可證明△DAC∽△DCE,利用相似三角形的性質結合勾股定理表示出AD,DC的長,再利用圓周角定理得出tan∠ABD的值即可得答案.
(1)如圖,連接OD,
∵AC是⊙O直徑,
∴∠ADC=90°,
∵點F為CE中點,
∴DF=CF,
∴∠FDC=∠DCF,
∵OD=OC,
∴∠ODC=∠OCD,
∵CE⊥AC,
∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,
∴DF是⊙O的切線.
(2)∵∠OCD+∠DCF=∠DAC+∠OCD=90°,
∴∠DCF=∠DAC,
∵∠ADC=∠CDE=90°,
∴△DAC∽△DCE,
∴,即CD2=AD·DE,
∵,
∴AC2=20DE2,
∵AC2=CD2+AD2,
∴AD2+AD·DE=20DE2,
∴(AD+5DE)(AD-4DE)=0,
解得:AD=4DE或AD=-5DE(舍去),
∴CD===2DE,
∵∠ABD=∠ACD,
∴tan∠ABD=tan∠ACD===2.
科目:初中數學 來源: 題型:
【題目】2019年3月12日是第41個植樹節(jié),某單位積極開展植樹活動,決定購買甲、乙兩種樹苗,用800元購買甲種樹苗的棵數與用680元購買乙種樹苗的棵數相同,乙種樹苗每棵比甲種樹苗每棵少6元.
(1)求甲種樹苗每棵多少元?
(2)若準備用3800元購買甲、乙兩種樹苗共100棵,則至少要購買乙種樹苗多少棵?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了解七年級男生“跳繩”成績的情況,隨機選取該年級部分男生進行測試.以下是根據測試成績繪制的統(tǒng)計圖表的一部分.
成績等級 | 頻數(人) | 頻率 |
優(yōu)秀 | ||
良好 | ||
及格 | 10 | 0.2 |
不及格 | 0.1 |
根據以上信息,解答下列問題:
(1)被測試男生中,成績等級為“優(yōu)秀”的男生人數占被測試男生總人數的百分比為________%,成績等級為“及格”的男生人數為________人;
(2)被測試男生的總人數為________人,成績等級為“不及格”的男生人數________人;
(3)若該校七年級共有570名男生,根據調查結果,估計該校七年級男生成績等級為“良好”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將正方形折疊,使頂點與邊上的一點重合(不與端點,重合),折痕交于點,交于點,邊折疊后與邊交于點,設正方形的周長為,的周長為,則的值為( )
A.B.C.D.2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個命題:
①當x>0時,y>0;
②若a=﹣1,則b=3;
③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,則y1>y2;
④點C關于拋物線對稱軸的對稱點為E,點G,F分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為6.
其中真命題的序號是____________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形的兩邊OA,OC分別落在軸,軸的正半軸上,的坐標為,反比例函數的圖象經過的中點E,且與BC邊相交于點D.
(1)①求反比例函數的解析式及點D的坐標;
②直接寫出的面積為________.
(2)若P是OA上的動點,當值為最小時,求直線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點A是第一象限內橫坐標為的一個定點,AC⊥x軸于點M,交直線y=﹣x于點N.若點P是線段ON上的一個動點,∠APB=30°,BA⊥PA,則點P在線段ON上運動時,A點不變,B點隨之運動.求當點P從點O運動到點N時,點B運動的路徑長是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com