【題目】如圖1,在△ABC中,∠ACB=90°,點(diǎn)P為△ABC內(nèi)一點(diǎn).

(1)連接PB,PC,將△BCP沿射線CA方向平移,得到△DAE,點(diǎn)B,C,P的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、

A、E,連接CE.

①依題意,請(qǐng)?jiān)趫D2中補(bǔ)全圖形;

②如果BP⊥CE,BP=3,AB=6,求CE的長(zhǎng)

(2)如圖3,以點(diǎn)A為旋轉(zhuǎn)中心,將△ABP順時(shí)針旋轉(zhuǎn)60°得到△AMN,連接PA、PB、PC,當(dāng)AC=3,

AB=6時(shí),根據(jù)此圖求PA+PB+PC的最小值.

【答案】(1) (2)

【解析】(1)①連接PB、PC,將△BCP沿射線CA方向平移,得到△DAE,點(diǎn)B、C、P的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、A、E,連接CE,據(jù)此畫(huà)圖即可;②連接BD、CD,構(gòu)造矩形ACBD和Rt△CDE,根據(jù)矩形的對(duì)角線相等以及勾股定理進(jìn)行計(jì)算,即可求得CE的長(zhǎng);

(2)以點(diǎn)A為旋轉(zhuǎn)中心,將△ABP順時(shí)針旋轉(zhuǎn)60°得到△AMN,連接BN,根據(jù)△PAM、△ABN都是等邊三角形,可得PA+PB+PC=CP+PM+MN,最后根據(jù)當(dāng)C、P、M、N四點(diǎn)共射線,PA+PB+PC的值最小,此時(shí)△CBN是直角三角形,利用勾股定理即可解決問(wèn)題.

解:(1)①補(bǔ)全圖形如圖所示;

②如圖,連接BD、CD

∵△BCP沿射線CA方向平移,得到△DAE,

∴BC∥AD且BC=AD,

∵∠ACB=90°,

∴四邊形BCAD是矩形,∴CD=AB=6,

∵BP=3,∴DE=BP=3,

∵BP⊥CE,BP∥DE,∴DE⊥CE,

∴在Rt△DCE中, ;

(2)證明:如圖所示,

當(dāng)C、P、M、N四點(diǎn)共線時(shí),PA+PB+PC最小

由旋轉(zhuǎn)可得,△AMN≌△APB,

∴PB=MN

易得△APM、△ABN都是等邊三角形,

∴PA=PM

∴PA+PB+PC=PM+MN+PC=CN,

∴BN=AB=6,∠BNA=60°,∠PAM=60°

∴∠CAN=∠CAB+∠BAN=60°+60°=120°,

∴∠CBN=90°

在Rt△ABC中,易得

∴在Rt△BCN中,

“點(diǎn)睛”本題屬于幾何變換綜合題,主要考查了旋轉(zhuǎn)和平移的性質(zhì)、全等三角形的判定和性質(zhì)、矩形的性質(zhì)以及勾股定理的綜合應(yīng)用,解決問(wèn)題的關(guān)鍵是作輔助線構(gòu)造等邊三角形和全等三角形,依據(jù)圖形的性質(zhì)進(jìn)行計(jì)算求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知 中, 邊上的點(diǎn),將 繞點(diǎn) 旋轉(zhuǎn),得到 .

(1)當(dāng) ∠=45° 時(shí),求證: .
(2)在(1)的條件下,猜想 , 有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(1,4),B(4,n)兩點(diǎn).

(1)求反比例函數(shù)的解析式;

(2)求一次函數(shù)的解析式;

(3)點(diǎn)Px軸上的一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)規(guī)定學(xué)生的學(xué)期體育成績(jī)滿分為100分,其中課外體育占20%,期中考試成績(jī)占30%,期末考試成績(jī)占50%.小彤的三項(xiàng)成績(jī)(百分制)次為95,90,88,則小彤這學(xué)期的體育成績(jī)?yōu)椋?/span>
A.89
B.90
C.92
D.93

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“低碳環(huán)保,你我同行”.今年合肥市區(qū)的增設(shè)的“小黃車(chē)”、“摩拜單車(chē)”等公共自行車(chē)

給市民出行帶來(lái)了極大的方便.圖①是某種公共自行車(chē)的實(shí)物圖,圖②是該種公共自行車(chē)的

車(chē)架示意圖,點(diǎn)A、D、C、E在同一條直線上,CD=30cm,DF=20cm,AF=25cm,F(xiàn)D⊥AE于點(diǎn)D,

座桿CE=15cm,且∠EAB=75°.求點(diǎn)E到AB的距離.(參考數(shù)據(jù):sin75°≈0.97,cos75°

≈0.26,tan75°≈3.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)校組織的社會(huì)實(shí)踐活動(dòng)中,甲、乙兩人參加了射擊比賽,每人射擊七次,命中的環(huán)數(shù)如表:

序號(hào)

甲命中的環(huán)數(shù)(環(huán))

7

8

8

6

9

8

10

乙命中的環(huán)數(shù)(環(huán))

5

10

6

7

8

10

10

根據(jù)以上信息,解決以下問(wèn)題:
(1)寫(xiě)出甲、乙兩人命中環(huán)數(shù)的眾數(shù);
(2)已知通過(guò)計(jì)算器求得 =8, ≈1.43,試比較甲、乙兩人誰(shuí)的成績(jī)更穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)三角形中直角的個(gè)數(shù)最多有(  )

A. 3 B. 1 C. 2 D. 0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形APBC是圓內(nèi)接四邊形,∠APB=120°,PC平分∠APB,AP,CB的延長(zhǎng)線相交于點(diǎn)D.

(1)求證:△ABC是等邊三角形;

(2)若∠PAC=90°,AB=2

①求PD的長(zhǎng).

②圖中弧BP和線段DP、BD組成的圖形面積為  (結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)國(guó)家統(tǒng)計(jì)局?jǐn)?shù)據(jù)顯示,我國(guó)2018年全國(guó)糧食總產(chǎn)量約為658000000噸.其中數(shù)據(jù)658000000用科學(xué)計(jì)數(shù)法可表示為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案