【題目】已知△ABC的內(nèi)切圓⊙O與AB,BC,AC分別相切于點(diǎn)D,E,F(xiàn),若,如圖①.
(1)判斷△ABC的形狀,并證明你的結(jié)論;
(2)設(shè)AE與DF相交于點(diǎn)M,如圖②,AF=2FC=4,求AM的長.
【答案】(1)等腰三角形 (2)
【解析】(1)、易證∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解題;(2)、連接OB、OC、OD、OF,易證AD=AF,BD=CF可得DF∥BC,再根據(jù)AE長度即可解題.
(1)等腰三角形.
證明:∵AC,AB,BC是⊙O的切線, ∴∠BDO=∠BEO=∠CFO=∠CEO=90°.
∵=,∴∠EOF=∠EOD, ∴∠B=∠C,∴AB=AC, 即△ABC是等腰三角形;
(2)∵AC=AB,CE=BE, ∴AE⊥BC,∠FAO=∠DAO,∵AF=AD,
∴FM=DM,AE⊥DF,∴AE過圓心O,DF∥BC,∴AF∶AC=DF∶BC,即4∶6=DF∶4,
∴DF=,∴FM=, ∴AM==.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1);
(2);
(3)2x3y(-2xy)+(-2x2y)2;
(4)(2a+b)(b-2a)-(a-3b)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O,D分別為AB,BC上的點(diǎn),經(jīng)過A,D兩點(diǎn)的⊙O分別交AB,AC于點(diǎn)E,F(xiàn),且D為弧EF的中點(diǎn).
(1)求證:BC與⊙O相切;
(2)當(dāng)⊙O的半徑r=2,∠CAD=30°時(shí),求劣弧AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店,甲種筆記本標(biāo)價(jià)每本8元,乙種筆記本標(biāo)價(jià)每本5元.今天,甲、乙兩種筆記本合計(jì)賣了100本,共賣了695元!
(1)兩種筆記本各銷售了多少?
(2)所得銷售款可能是660元嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】南開兩江中學(xué)校初一年級在3月18日聽了一堂“樹的暢想”的景觀設(shè)計(jì)課,隨后在本年級學(xué)生中進(jìn)行了活動收獲度調(diào)查,采取隨機(jī)抽樣的調(diào)查方式進(jìn)行網(wǎng)絡(luò)問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常有收獲”“比較有收獲”“收獲一般”“沒有太大的收獲”四個(gè)等級,分別記作A、B、C、D并根據(jù)調(diào)查結(jié)果繪制兩幅不完整統(tǒng)計(jì)圖:
(1)這次一共調(diào)查了_______名學(xué)生,并將條形統(tǒng)計(jì)圖補(bǔ)充完整
(2)請?jiān)趨⑴c調(diào)查的這些學(xué)生中,隨機(jī)抽取一名學(xué)生,求抽取到的學(xué)生對這次“樹的暢想”的景觀設(shè)計(jì)課活動收獲度是“收獲一般”或者“沒有太大的收獲”的概率
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,CD切⊙O于點(diǎn)E,△PCD的周長為12,∠APB=60°.
求:(1)PA的長;
(2)∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA是⊙O的切線,點(diǎn)C在⊙O上,CB∥PO.
(1)判斷PC與⊙O的位置關(guān)系,并說明理由;
(2)若AB=6,CB=4,求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在數(shù)軸上有A 、B、C三個(gè)點(diǎn),點(diǎn)A表示的數(shù)是-4,點(diǎn)B表示的數(shù)是-2,點(diǎn)C表示的數(shù)是2.
(1)在數(shù)軸上把A 、B、C三點(diǎn)表示出來,并比較各數(shù)的大。ㄓ谩<”連接);
(2)如何移動點(diǎn)B,使它到點(diǎn)A和點(diǎn)C的距離相等 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com