【題目】已知二次函數(shù)y=ax2+bx+c的頂點坐標(biāo)為A(1,9),且其圖象經(jīng)過點(﹣1,5)
(1)求此二次函數(shù)的解析式;
(2)寫出不等式ax2+bx+c>0的解集;
(3)若該函數(shù)圖象與x軸的交點為B、C,求△ABC的面積.
【答案】(1)y=-(x-1)2+9(或y=-x2+2x+8);(2)-2<x<4;(3) 27.
【解析】
(1)先利用待定系數(shù)法求出拋物線解析式;
(2)令y=0,得-(x-1)2+9=0,解得x1=4,x2=-2,由拋物線開口向下,可得不等式ax2+bx+>0的解集為-2<x<4;
(3)通過解方程-(x-1)2+9=0得到B、C兩點的坐標(biāo),然后根據(jù)三角形面積公式求解.
(1)設(shè)拋物線解析式為y=a(x-1)2+9,
把(-1,5)代入得a(-1-1)2+9=5,解得a=-1,
所以拋物線解析式為y=-(x-1)2+9;
(2)當(dāng)y=0時,-(x-1)2+9=0,解得x1=4,x2=-2,
因為拋物線開口向下,
所以當(dāng)-2<x<4時,y>0,
所以不等式ax2+bx+c>0的解集為-2<x<4;
(3)當(dāng)y=0時,-(x-1)2+9=0,解得x1=4,x2=-2,
所以B、C兩點的坐標(biāo)為(-2,0),(4,0),
所以△ABC的面積=×9×(4+2)=27.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)如圖,平行四邊形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF.
(1)求證:四邊形CEDF是平行四邊形;
(2)①當(dāng)AE= cm時,四邊形CEDF是矩形;
②當(dāng)AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為,與坐標(biāo)軸交于B、C、D三點,且B點的坐標(biāo)為.
(1)求二次函數(shù)的解析式;
(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、N作x軸的垂線交x軸于點G、H兩點,當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;
(3)當(dāng)矩形MNHG的周長最大時,能否在二次函數(shù)圖象上找到一點P,使的面積是矩形MNHG面積的?若存在,求出該點的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國經(jīng)濟的快速發(fā)展以及科技水平的飛速提高,中國高鐵正迅速崛起.高鐵大大縮短了時空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在2×2的正方形網(wǎng)格中,小正方形的邊長均為1,△ABC與△ADE的頂點都在格點上.
(1)求證:△ABC∽△ADE;
(2)求∠MDA+∠NDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過三點(1,0),(-3,0),(0,).
(1)求該二次函數(shù)的解析式;
(2)若反比例函數(shù)圖像與二次函數(shù)的圖像在第一象限內(nèi)交于點, 落在兩個相鄰的正整數(shù)之間,請寫出這兩個相鄰的正整數(shù);
(3)若反比例函數(shù)的圖像與二次函數(shù)的圖像在第一象限內(nèi)的交點為A,點A的橫坐標(biāo)為滿足,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖所示,下列結(jié)論:①;②;③當(dāng)時,;④;⑤若,且,則.其中正確的有______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,BC=6cm.點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是1cm/s.連接PQ、AQ、CP.設(shè)點P、Q運動的時間為ts.
當(dāng)t為何值時,四邊形ABQP是矩形;
當(dāng)t為何值時,四邊形AQCP是菱形;
分別求出(2)中菱形AQCP的周長和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為實施國家“營養(yǎng)早餐”工程,食堂用甲、乙兩種原料配制成某種營養(yǎng)食品,已知這兩種原料的維生素C含量及購買這兩種原料的價格如表:
原科維生素C及價格 | 甲種原料 | 乙種原料 |
維生素c(單位/千克) | 600 | 400 |
原料價格(元/千克) | 9 | 5 |
現(xiàn)要配制這種營養(yǎng)食品20千克,設(shè)購買甲種原料x千克,購買這兩種原料的總費用為y元.
(1)求y與x的函數(shù)關(guān)系式?
(2)若食堂要求營養(yǎng)食品每千克至少含有480單位的維生素C,試說明需要購買甲種原料多少千克時,總費用最少?最少費用是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com