【題目】如圖,在平面直角坐標系xOy中,已知點A(0,8),B(6,0),點C(3,a)在線段AB上.
(1)則a的值為________;
(2)若點D(-4,3),求直線CD的函數(shù)表達式;
(3)點(-5,-4)在直線CD上嗎?說明理由.
【答案】4
【解析】(1)利用待定系數(shù)法求出AB的解析式,然后把點C坐標代入即可得;
(2)由C、D的坐標,利用待定系數(shù)法即可求得直線CD的解析式;
(3)把x=-5代入直線CD解析式,通過計算比較即可得..
(1)設直線AB的解析式為y=mx+n,
把A(0,8)、B(6,0)分別代入得:,
解得:,
所以直線AB的解析式為:y=x+8,
由點C(3,a)在線段AB上,則有a=-4+8=4,
故答案為:4;
(2)設直線CD的函數(shù)表達式為y=kx+b,
將C(3,4),D(-4,3)代入得,
解得:,故直線CD的函數(shù)表達式為y=x+;
(3)點(-5,-4)不在直線CD上,理由如下:
當x=-5時,y=×(-5)+=≠-4,
∴點(-5,-4)不在直線CD上.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+c與x軸交于點A和點B,與y軸交于點C,點B坐標為(6,0),點C坐標為(0,6),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接BD.
(Ⅰ)求拋物線的解析式及點D的坐標;
(Ⅱ)點F是拋物線上的動點,當∠FBA=∠BDE時,求點F的坐標;
(Ⅲ)若點M是拋物線上的動點,過點M作MN∥x軸與拋物線交于點N,點P在x軸上,點Q在坐標平面內(nèi),以線段MN為對角線作正方形MPNQ,請寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,E、F分別是AB、CD的中點.
(1)求證:四邊形EBFD為平行四邊形;
(2)對角線AC分別與DE、BF交于點M、N.求證:△ABN≌△CDM.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系xOy中,已知點A(0,3),B(2,3),OC=a.將梯形ABCO沿直線y=x折疊,點A落在線段OC上,對應點為E.
(1)求點E的坐標;
(2)①若BC∥AE,求a的值;(提示:兩邊互相平行的四邊形是平行四邊形,平行四邊形的對邊相等)
②如圖②,若梯形ABCO的面積為2a,且直線y=mx將此梯形面積分為1∶2的兩部分,求直線y=mx的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C,點D為BC邊上(B,C點除外)的動點,∠EDF的兩邊與AB,AC分別交于點E,F,且BD=CF,BE=CD.
(1)求證:DE=DF;
(2)若∠EDF=m,用含m的代數(shù)式表示∠A的度數(shù);
(3)連接EF,求當△DEF為等邊三角形時∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一個口袋中裝有七個完全相同的小球,小球上分別標有-3、-2、-1、0、1、2、3七個數(shù),攪勻后一次從中摸出一個小球,將小球上的數(shù)用表示,將的值分別代入函數(shù)和方程,恰好使得函數(shù)的圖像經(jīng)過二、四象限,且方程有整數(shù)解,那么這7個數(shù)中所有滿足條件的的值之和是( )
A. 1 B. -1 C. -3 D. -4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖(1)中,對任意相鄰的上下或左右兩格中的數(shù)字同時加1或減2,這算作一次操作,經(jīng)過若干次操作后,圖(1)能變?yōu)閳D(2),則圖(2)中A格內(nèi)的數(shù)是_____
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是某小區(qū)的一個健向器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①,求證:OB∥AC.
(2)如圖②,若點E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于;(在橫線上填上答案即可).
(3)在(2)的條件下,若平行移動AC,如圖③,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值.
(4)在(3)的條件下,如果平行移動AC的過程中,若使∠OEB=∠OCA,求∠OCA度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com