【題目】已知:如圖1,在△ABC中,AB=AC,點(diǎn) D 是邊 BC 的中點(diǎn).以BD為直徑作⊙O,交邊 AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是⊙O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:CE=2PE;
(3)如圖2,當(dāng)PC是⊙O的切線,E為AD 中點(diǎn),BC=8,求AD的長(zhǎng).
【答案】(1)證明見(jiàn)詳解;(2)證明見(jiàn)詳解;(3)2.
【解析】
(1)要證明AD是圓O的切線,只要證明∠BDA=90°即可;
(2)連接PD、PO,根據(jù)直徑上的圓周角是直角可得PD∥AC,所以得△PBD是等腰三角形,則OD=BD,又由已知得OD=BD=DC,由平行線分線段成比例得=;
(3)連接OP,根據(jù)三角函數(shù)可求得PC,CD的長(zhǎng),再在Rt△ADE中利用三角函數(shù)求得DE的長(zhǎng),進(jìn)而得出AD的長(zhǎng).
(1)證明:∵AB=AC,點(diǎn)D是邊BC的中點(diǎn),
∴AD⊥BD.
又∵BD是圓O直徑,
∴AD是圓O的切線.
(2)證明:連接PD、PO,
∴PD∥AC,
已知△ABC中,AB=AC,∴BD=DC,
∴PB=PD,
∴OD=OB=BD=DC,
∴PE=CE,
∴=,
即CE=2PE;
(3)連接OP,
由BC=8,得CD=4,OC=6,OP=2,
∵PC是圓O的切線,O為圓心,
∴∠OPC=90°∴由勾股定理,得PC=4,
在△OPC中,tan∠OCP= =,
在△DEC中,tan∠DCE= =,DE=DC=.
∵E為AD中點(diǎn),
∴AD=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線 (a≠0)的對(duì)稱(chēng)軸為直線x=1,與x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個(gè)根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時(shí),x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時(shí),y隨x增大而增大
其中結(jié)論正確的個(gè)數(shù)是( 。
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知:如圖1,在Rt△ABC和Rt△A′B′C′中,AB=A′B′,AC=A′C′,∠C=∠C′=90°.求證:Rt△ABC和Rt△A′B′C′全等.
(1)請(qǐng)你用“如果…,那么…”的形式敘述上述命題;
(2)如圖2,將△ABC和A′B′C′拼在一起(即:點(diǎn)A與點(diǎn)B′重合,點(diǎn)B與點(diǎn)A′重合),BC和B′C′相交于點(diǎn)O,請(qǐng)用此圖證明上述命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過(guò)程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:①甲步行的速度為60米/分;②乙走完全程用了30分鐘;③乙用12分鐘追上甲;④乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有360米;其中正確的結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)畫(huà)線段AD∥BC且使AD=BC,連接CD;
(2)線段AC的長(zhǎng)為 ,CD的長(zhǎng)為 ,AD的長(zhǎng)為_____;
(3)△ACD為 三角形,四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,D為BC中點(diǎn),BE、CF與射線AE分別相交于點(diǎn)E、F(射線AE不經(jīng)過(guò)點(diǎn)D).
(1)如圖①,當(dāng)BE∥CF時(shí),連接ED并延長(zhǎng)交CF于點(diǎn)H. 求證:四邊形BECH是平行四邊形;
(2)如圖②,當(dāng)BE⊥AE于點(diǎn)E,CF⊥AE于點(diǎn)F時(shí),分別取AB、AC的中點(diǎn)M、N,連接ME、MD、NF、ND. 求證:∠EMD=∠FND.
圖① 圖②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市對(duì)進(jìn)貨價(jià)為10元/千克的某種蘋(píng)果的銷(xiāo)售情況進(jìn)行統(tǒng)計(jì),發(fā)現(xiàn)每天銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫(xiě)出x的取值范圍);
(2)應(yīng)怎樣確定銷(xiāo)售價(jià),使該品種蘋(píng)果的每天銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,交BC的延長(zhǎng)線于點(diǎn)F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com