【題目】如圖,矩形中,,,動(dòng)點(diǎn)點(diǎn)出發(fā)以/秒向終點(diǎn)運(yùn)動(dòng),動(dòng)點(diǎn)同時(shí)從點(diǎn)出發(fā)以/秒按的方向在邊,上運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(秒),那么的面積隨著時(shí)間(秒)變化的函數(shù)圖象大致為(

A.B.C.D.

【答案】A

【解析】

根據(jù)題意分三種情況討論APQ面積的變化,進(jìn)而得出APQ的面積ycm2)隨著時(shí)間x(秒)變化的函數(shù)圖象大致情況.

解:根據(jù)題意可知:APx,Q點(diǎn)運(yùn)動(dòng)路程為2x,

①當(dāng)點(diǎn)QAD上運(yùn)動(dòng)時(shí),

yAPAQx2xx2,圖象為開口向上的二次函數(shù);

②當(dāng)點(diǎn)QDC上運(yùn)動(dòng)時(shí),

yAPDAx×3,是一次函數(shù);

③當(dāng)點(diǎn)QBC上運(yùn)動(dòng)時(shí),

yAPBQx122x)=x26x,為開口向下的二次函數(shù),

結(jié)合圖象可知A選項(xiàng)函數(shù)關(guān)系圖正確,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)A4,0)和點(diǎn)D-10),與y軸交于點(diǎn)C,過(guò)點(diǎn)CBC平行于x軸交拋物線于點(diǎn)B,連接AC
1)求這個(gè)二次函數(shù)的表達(dá)式;
2)點(diǎn)M從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng);點(diǎn)N從點(diǎn)B同時(shí)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)C運(yùn)動(dòng),其中一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停動(dòng),過(guò)點(diǎn)NNQ垂直于BCAC于點(diǎn)Q,連結(jié)MQ
①求△AQM的面積S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,寫出自變量的取值范圍;當(dāng)t為何值時(shí),S有最大值,并求出S的最大值;
②是否存在點(diǎn)M,使得△AQM為直角三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,函數(shù)的圖象與一次函數(shù)y=kx-k的圖象的交點(diǎn)為A(m,2).

(1)求一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx-k的圖象與y軸交于點(diǎn)B,若P是x軸上一點(diǎn), 且滿足PAB的面積是4,

直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),其中點(diǎn)A(0,1,點(diǎn)B(﹣9,10,AC∥x軸,點(diǎn)P時(shí)直線AC下方拋物線上的動(dòng)點(diǎn).

(1求拋物線的解析式;(2過(guò)點(diǎn)P且與y軸平行的直線l與直線AB、AC分別交于點(diǎn)E、F,當(dāng)四邊形AECP的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3當(dāng)點(diǎn)P為拋物線的頂點(diǎn)時(shí),在直線AC上是否存在點(diǎn)Q,使得以C、P、Q為頂點(diǎn)的三角形與△ABC相似,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2+bx+c的對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0),(0,﹣3).

1)求拋物線的表達(dá)式.

2)已知點(diǎn)(mk)和點(diǎn)(n,k)在此拋物線上,其中mn,請(qǐng)判斷關(guān)于t的方程t2+mt+n0是否有實(shí)數(shù)根,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年某省實(shí)施人才引進(jìn)政策,對(duì)引進(jìn)人才給予資金扶持和落戶優(yōu)惠,海內(nèi)外英才紛紛向組織部門遞交報(bào)名表.為了了解報(bào)名人員年齡結(jié)構(gòu)情況,抽樣調(diào)查了50名報(bào)名人員的年齡(單位:歲),將抽樣得到的數(shù)據(jù)分成5組,統(tǒng)計(jì)如下表:

分組

頻數(shù)(人數(shù))

頻率

30歲以下

0.16

大于30歲不大于40

20

0.40

大于40歲不大于50

14

大于50歲不大于60

6

0.12

60歲以上

1)請(qǐng)將表格中空格填寫完整;

2)樣本數(shù)據(jù)的中位數(shù)落在_____,若把樣本數(shù)據(jù)制成扇形統(tǒng)計(jì)圖,則“大于30歲不大于40歲”的圓心角為______度;

3)如果共有2000人報(bào)名,請(qǐng)你根據(jù)上面數(shù)據(jù),估計(jì)年齡不大于40歲的報(bào)名人員會(huì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的邊長(zhǎng)為3,∠BAD60°,點(diǎn)EF在對(duì)角線AC上(點(diǎn)E在點(diǎn)F的左側(cè)),且EF1,則DE+BF最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的半徑為1,的直徑,過(guò)點(diǎn)的切線,的中點(diǎn),點(diǎn),四邊形是平行四邊形.

1)求的長(zhǎng):

2的切線嗎?若是,給出證明;若不是,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)兩座教學(xué)樓中間有個(gè)路燈,甲、乙兩個(gè)人分別在樓上觀察路燈頂端,視線所及如圖①所示.根據(jù)實(shí)際情況畫出平面圖形如圖②,CDDF,ABDFEFDF,甲從點(diǎn)C可以看到點(diǎn)G處,乙從點(diǎn)E恰巧可以看到點(diǎn)D處,點(diǎn)BDF的中點(diǎn),路燈AB5.5米,DF=120米,BG=10.5米,求甲、乙兩人的觀測(cè)點(diǎn)到地面的距離的差.

查看答案和解析>>

同步練習(xí)冊(cè)答案