(2013•襄陽)如圖,平行四邊形ABCD的對角線交于點O,且AB=5,△OCD的周長為23,則平行四邊形ABCD的兩條對角線的和是(  )
分析:由平行四邊形的性質和已知條件計算即可,解題注意求平行四邊形ABCD的兩條對角線的和時要把兩條對角線可作一個整體.
解答:解:∵四邊形ABCD是平行四邊形,
∴AB=CD=5,
∵△OCD的周長為23,
∴OD+OC=23-5=18,
∵BD=2DO,AC=2OC,
∴平行四邊形ABCD的兩條對角線的和=BD+AC=2(DO+OC)=36,
故選C.
點評:本題主要考查了平行四邊形的基本性質,并利用性質解題.平行四邊形的基本性質:①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,BD平分∠ABC,CD∥AB,若∠BCD=70°,則∠ABD的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E,B、E是半圓弧的三等分點,弧BE的長為
2
3
π,則圖中陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,水平放置的圓柱形排水管道的截面直徑是1m,其中水面的寬AB為0.8m,則排水管內(nèi)水的深度為
0.2
0.2
 m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•襄陽)如圖,已知拋物線y=ax2+bx+c與x軸的一個交點A的坐標為(-1,0),對稱軸為直線x=-2.
(1)求拋物線與x軸的另一個交點B的坐標;
(2)點D是拋物線與y軸的交點,點C是拋物線上的另一點.已知以AB為一底邊的梯形ABCD的面積為9.求此拋物線的解析式,并指出頂點E的坐標;
(3)點P是(2)中拋物線對稱軸上一動點,且以1個單位/秒的速度從此拋物線的頂點E向上運動.設點P運動的時間為t秒.
①當t為
2
2
秒時,△PAD的周長最?當t為
4或4-
6
或4+
6
4或4-
6
或4+
6
秒時,△PAD是以AD為腰的等腰三角形?(結果保留根號)
②點P在運動過程中,是否存在一點P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案