如圖,⊙O的圓心在坐標(biāo)原點,半徑為2,直線y=x+b(b>0)與⊙O交于A、B兩點,點O關(guān)于直線y=x+b的對稱點O′,
(1)求證:四邊形OAO′B是菱形;
(2)當(dāng)點O′落在⊙O上時,求b的值.
(1)證明:連接OO′,
∵點O關(guān)于直線y=x+b的對稱,
∴直線y=x+b是線段OO′的垂直平分線,
∴AO=AO′,BO=BO′,
又∵OA,OB是⊙O的半徑,
∴OA=OB,
∴AO=AO′=BO=BO′,
∴四邊形OAO′B是菱形.

(2)如圖,菱形OAO'B的對角線交點為點M,
當(dāng)點O′落在圓上時,
∵OM=
1
2
OO′=1,
∵設(shè)直線y=x+b與x軸、y軸的交點坐標(biāo)分別是N(-b,0),P(0,b),
∴△ONP為等腰直角三角形,
∴∠ONP=45°,
∵四邊形OAO′B是菱形,
∴OM⊥PN,
∵∠ONP=45°=∠OPN,
∴OM=PM=MN=1,
在Rt△POM中,由勾股定理得:OP=
2
,
即b=
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=x+2的圖象分別交x軸,y軸于A、B兩點,⊙O1過以O(shè)B為邊長的正方形OBCD的四個頂點,兩動點P、Q同時從點A出發(fā)在四邊形ABCD上運(yùn)動,其中動點P以每秒
2
個單位長度的速度沿A→B→A運(yùn)動后停止;動點Q以每秒2個單位長度的速度沿A→O→D→C→B運(yùn)動,AO1交y軸于E點,P、Q運(yùn)動的時間為t(秒).
(1)直接寫出E點的坐標(biāo)和S△ABE的值;
(2)試探究點P、Q從開始運(yùn)動到停止,直線PQ與⊙O1有哪幾種位置關(guān)系,并指出對應(yīng)的運(yùn)動時間t的范圍;
(3)當(dāng)Q點運(yùn)動在折線AD→DC上時,是否存在某一時刻t使得S△APQ:S△ABE=3:4?若存在,請確定t的值和直線PQ所對應(yīng)的函數(shù)解析式;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖表示甲、乙兩名賽車選手在一次自行車越野賽中,路程y(km)隨時間x(min)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)甲、乙兩名賽車選手中,______先到達(dá)終點,寫出乙運(yùn)動員的路程y與時間x的函數(shù)關(guān)系式______,這次比賽的全程是______km;
(2)寫出甲的速度慢于乙的速度時,時間x的取值范圍:______;
(3)比賽開始______min時,兩人第二次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC,∠BAC=90°,AB=AC=4,分別以AC,AB所在直線為x軸,y軸建立直角坐標(biāo)系(如圖).點M(m,n)是直線BC上的一個動點,設(shè)△MAC的面積為S.
(1)求直線BC的解析式;
(2)求S關(guān)于m的函數(shù)解析式;
(3)是否存在點M,使△AMC為等腰三角形?若存在,求點M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點,與y軸正半軸交于C點,已知A(-1,0),O1(1,0)
(1)求出C點的坐標(biāo).
(2)過點C作CDAB交⊙O1于D,連接BD,求證:四邊形ABDC是等腰梯形.
(3)若過點C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一次函數(shù)y=kx+(k-3)的函數(shù)圖象不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=
3
3
x與直線y=kx+b交于點A(m,n)(m>0),點B在直線y=
3
3
x上且與點A關(guān)于坐標(biāo)原點O成中心對稱.
(1)若OA=1,求點A的坐標(biāo);
(2)若坐標(biāo)原點O到直線y=kx+b的距離為1.94,直線y=kx+b與x軸正半軸交于點P,且△PAB是以PA為直角邊的直角三角形,求點A的坐標(biāo).(sin15°=0.26,cos15°=0.97,tan15°=0.27)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為響應(yīng)薄熙來書記建設(shè)“森林重慶”的號召,某園藝公司從2010年9月開始積極進(jìn)行植樹造林.該公司第x月種植樹木的畝數(shù)y(畝)與x之間滿足y=x+4,(其中x從9月算起,即9月時x=1,10月時x=2,…,且1≤x≤6,x為正整數(shù)).由于植樹規(guī)模擴(kuò)大,每畝的收益P(千元)與種植樹木畝數(shù)y(畝)之間存在如圖(25題圖)所示的變化趨勢.
(1)根據(jù)如圖所示的變化趨勢,直接寫出P與y之間所滿足的函數(shù)關(guān)系表達(dá)式;
(2)行動實施六個月來,求該每月收益w(千元)與月份x之間的函數(shù)關(guān)系式,并求x為何值時總收益最大?此時每畝收益為多少?
(3)進(jìn)入植樹造林的第七個月,政府出臺了一項激勵措施:在“植樹造林”過程中,每月植樹面積與第六個月植樹面積相同的部分,按第六月每畝收益進(jìn)行結(jié)算;超出第六月植樹面積的部分,每畝收益將按第六月時每畝的收益再增加0.6m%進(jìn)行結(jié)算.這樣,該公司第七月植樹面積比第六月增加了m%.另外,第七月時公司需對前六個月種植的所有樹木進(jìn)行保養(yǎng),除去成本后政府給予每畝4m%千元的保養(yǎng)補(bǔ)貼.最后,該公司第七個月獲得種植樹木的收益和政府保養(yǎng)補(bǔ)貼共702千元.請通過計算,估算出m的整數(shù)值.(參考數(shù)據(jù):422=1764,432=1849,442=1936).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在平面直角坐標(biāo)系中,矩形OABC的邊OC=6,對角線OB所在直線的函數(shù)解析式y=
3
4
x

(1)直接寫出C點的坐標(biāo);
(2)若D是BC邊上的點,過D作DE⊥OB于E,已知DE=3.6.
①求出CD的長;
②以點C為圓心,CD長為半徑作⊙C、試問在對角線OB上是否存在點P,使得以點P為圓心的⊙P與⊙C、x軸都相切?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案