【題目】某數(shù)學興趣小組開展了一次活動,過程如下:如圖1,等腰直角△ABC中,AB=AC,∠BAC=90°,小敏將三角板中含45°角的頂點放在A上,斜邊從AB邊開始繞點A逆時針旋轉(zhuǎn)一個角α,其中三角板斜邊所在的直線交直線BC于點D,直角邊所在的直線交直線BC于點E.

(1)小敏在線段BC上取一點M,連接AM,旋轉(zhuǎn)中發(fā)現(xiàn):若AD平分∠BAM,則AE也平分∠MAC.請你證明小敏發(fā)現(xiàn)的結(jié)論;
(2)當0°<α≤45°時,小敏在旋轉(zhuǎn)中還發(fā)現(xiàn)線段BD、CE、DE之間存在如下等量關(guān)系:BD2+CE2=DE2 . 同組的小穎和小亮隨后想出了兩種不同的方法進行解決:
小穎的想法:將△ABD沿AD所在的直線對折得到△ADF,連接EF(如圖2);
小亮的想法:將△ABD繞點A逆時針旋轉(zhuǎn)90°得到△ACG,連接EG(如圖3);
請你從中任選一種方法進行證明.
(3)小敏繼續(xù)旋轉(zhuǎn)三角板,請你繼續(xù)研究:當135°<α<180°時(如圖4),等量BD2+CE2=DE2是否仍然成立?請作出判斷,不需要證明.

【答案】
(1)證明:如圖1,

∵∠BAC=90°,
∴∠BAD+∠DAM+∠MAE+∠EAC=90°.
∵∠DAE=45°,
∴∠BAD+∠EAC=45°.
∵∠BAD=∠DAM,
∴∠BAD+∠EAC=∠DAM+∠EAC=45°,
∴∠BAD+∠MAE=∠DAM+∠EAC,
∴∠MAE=∠EAC,即AE平分∠MAC
(2)解:選擇小穎的方法.
證明:如圖2,連接EF.

由折疊可知,∠BAD=∠FAD,AB=AF,BD=DF,
∵∠BAD=∠FAD,
∴由(1)可知,∠CAE=∠FAE.
在△AEF和△AEC中,

∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD+∠AFE=90°.
在Rt△DFE中,DF2+FE2=DE2 ,
∴BD2+CE2=DE2
選擇小亮的方法,
證明:∵將△ABD繞點A逆時針旋轉(zhuǎn)90°得到△ACG,

∴△ADB≌△AGC,
∴∠B=∠ACG=45°,AD=AG,BD=CG,
∵∠BAC=∠DAG=90°,∠DAE=45°,
∴∠EAG=45°,
在△DAE和△GAE中,

∴△DAE≌△GAE(SAS),
∴DE=EG,
∵∠ACB=90°,
∴∠ECG=∠ACB+∠ACG=45°+45°=90°,
∴△ECG是直角三角形,
∴CG2+CE2=EG2
即BD2+CE2=DE2
(3)解:當135°<α<180°時,等量關(guān)系BD2+CE2=DE2仍然成立.證明如下:
如圖4,

按小穎的方法作圖,設AB與EF相交于點G.
∵將△ABD沿AD所在的直線對折得到△ADF,
∴AF=AB,∠AFD=∠ABD=135°,∠BAD=∠FAD.
又∵AC=AB,∴AF=AC.
又∵∠CAE=90°﹣∠BAE=90°﹣(45°﹣∠BAD)=45°+∠BAD=45°+∠FAD=∠FAE.
∴∠CAE=∠FAE.
在△AEF和△AEC中,
,
∴△AEF≌△AEC(SAS),
∴CE=FE,∠AFE=∠C=45°.
∴∠DFE=∠AFD﹣∠AFE=∠135°﹣∠C=135°﹣45°=90°.
∴∠DFE=90°.
在Rt△DFE中,DF2+FE2=DE2 ,
∴BD2+CE2=DE2
【解析】(1)利用等式的基本性質(zhì)和角平分線定義即可證出;(2)利用折疊或旋轉(zhuǎn),可將BD、CE、DE組合到一個三角形中,利用全等證明得到對應邊相等,對應角相等,證出直角三角形,利用勾股定理得到結(jié)論;(3)借鑒(2)的思路方法,利用折疊的性質(zhì),可得到全等三角形,再利用其性質(zhì)得到直角三角形,進而得到結(jié)論.
【考點精析】利用全等三角形的性質(zhì)和軸對稱的性質(zhì)對題目進行判斷即可得到答案,需要熟知全等三角形的對應邊相等; 全等三角形的對應角相等;關(guān)于某條直線對稱的兩個圖形是全等形;如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應點連線的垂直平分線;兩個圖形關(guān)于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】一段平直的公路上有三個城市,城在城和城之間,一輛慢車從城出發(fā)勻速開往城,與此同時一輛快車從城出發(fā)勻速開往城.當慢車到達城后立即以倍原速勻速返回到城.當快車到達城后,休息了半小時后再提高原速的的速度勻速開往城.下圖是慢車出發(fā)后的時間(小時)與兩車之間的距離(千米)之間的函數(shù)關(guān)系圖,慢車出發(fā)6小時后,兩車相距___________千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MNBC,設 MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F

1)求證:OEOF;

2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.

3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想ABC 的形狀并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直角三角板ABC的直角頂點C在直線DE上,CF平分∠BCD

1)在圖1中,若∠BCE40°,∠ACF   ;

2)在圖1中,若∠BCE=α,∠ACF   (用含α的式子表示);

3)將圖1中的三角板ABC繞頂點C旋轉(zhuǎn)至圖2的位置,若∠BCE150°,試求∠ACF與∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的材料:
解方程x4﹣7x2+12=0這是一個一元四次方程,根據(jù)該方程的特點,它的解法通常是:設x2=y,則x4=y2 , ∴原方程可化為:y2﹣7y+12=0,解得y1=3,y2=4,當y=3時,x2=3,x=± ,當y=4時,x2=4,x=±2.∴原方程有四個根是:x1= ,x2=﹣ ,x3=2,x4=﹣2,以上方法叫換元法,達到了降次的目的,體現(xiàn)了數(shù)學的轉(zhuǎn)化思想,運用上述方法解答下列問題.
(1)解方程:(x2+x)2﹣5(x2+x)+4=0;
(2)已知實數(shù)a,b滿足(a2+b22﹣3(a2+b2)﹣10=0,試求a2+b2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)一種新藥,在做藥效試驗時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時間t(h)的變化圖象如圖所示,根據(jù)圖象回答:

(1)服藥后幾時血液中含藥量最高?每毫升血液中含多少微克?

(2)在服藥幾時內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時后,每毫升血液中含藥量逐漸下降?

(3)服藥后14 h時,每毫升血液中含藥量是多少微克?

(4)如果每毫升血液中含藥量為4微克及以上時,治療疾病有效,那么有效時間為幾時?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,有一張菱形紙片ABCD,AC=8,BD=6.
請沿著AC剪一刀,把它分成兩部分,把剪開的兩部分拼成一個平行四邊形,在圖2中用實線畫出你所拼成的平行四邊形;若沿著BD剪開,請在圖3中用實線畫出拼成的平行四邊形.并直接寫出這兩個平行四邊形的周長.
沿著一條直線剪開,拼成與上述兩種都不全等的平行四邊形,請在圖4中用實線畫出拼成的平行四邊形.(注:上述所畫的平行四邊形都不能與原菱形全等)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明,如圖點D,EF分別是三角形ABC的邊BC,CAAB上的點,DEBADFCA.求證:∠FDE=∠A

證明:∵DEAB,

∴∠FDE=∠      

DFCA,

∴∠A=∠      

∴∠FDE=∠A   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案