【題目】已知:一次函數(shù)圖象如圖,

1)求一次函數(shù)的解析式;

2)若點(diǎn)P為該一次函數(shù)圖象上一動(dòng)點(diǎn),且點(diǎn)A為該函數(shù)圖象與x軸的交點(diǎn),若SOAP2,求點(diǎn)P的坐標(biāo).

【答案】1y=﹣x+1;(2P點(diǎn)坐標(biāo)為(﹣3,4)或(5,﹣4).

【解析】

1)利用待定系數(shù)法求一次函數(shù)解析式;
2)先計(jì)算出函數(shù)值為0所對(duì)應(yīng)的自變量的值得到A點(diǎn)坐標(biāo),設(shè)Pt,-t+1),根據(jù)三角形面積公式得到×1×|-t+1|=2,然后解絕對(duì)值方程求出t即可得到P點(diǎn)坐標(biāo).

1)設(shè)一次函數(shù)解析式為ykx+b,

把(﹣2,3)、(2,﹣1)分別代入得,解得,

所以一次函數(shù)解析式為y=﹣x+1

2)當(dāng)y0時(shí),﹣x+10,解得x1,則A1,0),

設(shè)Pt,﹣t+1),

因?yàn)?/span>SOAP2,

所以×1×|t+1|2,解得t=﹣3t5,

所以P點(diǎn)坐標(biāo)為(﹣3,4)或(5,﹣4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,∠B30°,∠ACB100°AE平分∠BAC,求∠EAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等腰三角形一腰上的中線將三角形的周長(zhǎng)分為9cm15cm兩部分,求這個(gè)等腰三角形的底邊長(zhǎng)和腰長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,E,F(xiàn)是正方形ABCD的對(duì)角線AC上的兩點(diǎn),且AE=CF.

(1)求證:四邊形BEDF是菱形;

(2)若正方形ABCD的邊長(zhǎng)為4,AE=,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),等腰直角三角形OAB的斜邊AOx軸上,,點(diǎn)B的坐標(biāo)為

1)求A點(diǎn)坐標(biāo);

2)過(guò)B軸于C,點(diǎn)DB出發(fā)沿射線BC以每秒2個(gè)單位的速度運(yùn)動(dòng),連接AD、OD,動(dòng)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t的面積為S,求St的數(shù)量關(guān)系,并直接寫(xiě)出t的取值范圍;

3)在(2)的條件下,當(dāng)點(diǎn)D運(yùn)動(dòng)到x軸下方時(shí),延長(zhǎng)ABy軸于E,過(guò)EH,在x軸正半軸上取點(diǎn)F,連接BFEHG,,當(dāng)時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓⊙O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(2,0),∠CAB=90°,AC=AB,頂點(diǎn)A在⊙O上運(yùn)動(dòng),當(dāng)直線AB與⊙O相切時(shí)A點(diǎn)的坐標(biāo)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC≌△ADE,∠DAC70°,∠BAE100°,BCDE相交于點(diǎn)F,則∠DFB度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料:

問(wèn)題:已知方程x2+x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的2倍.

解:設(shè)所求方程的根為y,則y=2x,所以x=,把x=,代入已知方程,

得(2 +﹣1=0.

化簡(jiǎn),得y2+2y﹣4=0,

故所求方程為y2+2y﹣4=0

這種利用方程根的代換求新方程的方法,我們稱(chēng)為換根法”.

請(qǐng)用閱讀材料提供的換根法求新方程(要求:把所求方程化為一般形式):

(1)已知方程x2+2x﹣1=0,求一個(gè)一元二次方程,使它的根分別是已知方程根的相反數(shù),則所求方程為 ;

(2)已知關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)有兩個(gè)不等于零的實(shí)數(shù)根,求一個(gè)一元二次方程,使它的根分別是已知方程根的倒數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ADB=∠ACB90°,ACBD相交于點(diǎn)O,且OAOB,下列結(jié)論:ADBC;ACBD;CDA=∠DCB;CDAB,其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案