【題目】如圖,先對折矩形得折痕MN,再折紙使折線過點B,且使得AMN上,這時折線EBBC所成的角為(

A.30°B.45°C.60°D.75°

【答案】C

【解析】

延長EABC于點F,根據(jù)折疊的性質(zhì)可得DEMACB,∠EAB=90°,DM=CM,2EBA+∠FBA=90°,然后根據(jù)平行線分線段成比例定理證出EA=FA,然后根據(jù)垂直平分線的性質(zhì)可得BE=BF,然后根據(jù)三線合一結(jié)合已知條件即可求出結(jié)論.

解:延長EABC于點F

由折疊可得:DEMACB,∠EAB=90°,DM=CM,2EBA+∠FBA=90°

EAFA=DMCM=1,

EA=FA

AB垂直平分EF

BE=BF

∴∠EBA=FBA

3EBA=90°

∴∠EBA=30°

∴∠EBF=EBA+∠FBA=60°

即折線EBBC所成的角為60°

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學校寢室數(shù)為64個,以后逐年增加,預計2020年寢室數(shù)達到121個,求20182020年寢室數(shù)量的年平均增長率;

(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AD平分∠BAC,DE∥AC交AB于E,DFAB交AC于F,若AF=6,則四邊形AEDF的周長是(  。

A. 24 B. 28 C. 32 D. 36

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

1)實踐操作:中,,為直線上一點,過點作,與直線相交于點,如圖①,圖②,圖③所示,則的形狀為______.

2)問題解決:等腰三角形是一種特殊的三角形,常與全等三角形的相關知識結(jié)合在一起解決問題.如圖④,中,,上一點,延長線上一點,且,,求證:.

3)拓展與應用,在(2)的條件下,如圖⑤,過點的垂線,垂足為,若,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以的直角邊和斜邊為邊向外作正方形和正方形,連結(jié)、.給出下列結(jié)論:

其中正確的是(

A.②③④B.①②③C.①②④D.①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內(nèi)一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉(zhuǎn)90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉(zhuǎn)90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD平分,AB=AC,則此圖中全等三角形有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)問題發(fā)現(xiàn):

如圖①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,點 B 在線段AE 上,點 C 在線段AD 上,請直接寫出線段 BE 與線段 CD 的數(shù)量與位置關系是關系: ;

(2)操作探究:

如圖②,將圖①中的△ABC 繞點 A 順時針旋轉(zhuǎn)α(0°<α<360°),(1)小題中線段 BE 與線段 CD 的關系是否成立?如果不成立,說明理由,如果成立,請你結(jié)合圖②給出的情形進行證明;

(3)解決問題:

將圖①中的△ABC 繞點 A 順時針旋轉(zhuǎn)α(0°<α<360°), DE=2AC,在旋轉(zhuǎn)的過程中,當以 A、B、C、D 四點為頂點的四邊形是平行四邊形時,在備用圖中畫出其中的一個情形,并寫出此時旋轉(zhuǎn)角α的度數(shù)是 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知線段、相交于點O,連接、.

1)求證:

2)如圖2,的平分線、相交于點P,求證:.

查看答案和解析>>

同步練習冊答案