分析 如圖,連接BD交AE于O,連接EG,作OM⊥BC于M,DN⊥BC于N.首先證明四邊形ABED是菱形,再證明AD=DC,設(shè)AB=AD=DC=DE=BE=x,則EC=x-1,由OB=OD,OM∥DN,推出BM=MN,由DE=DC,DN⊥EC,推出EN=NC=$\frac{1}{2}$(x-1),推出BM=$\frac{1}{2}$BN=$\frac{1}{2}$(x+$\frac{1}{2}$x-$\frac{1}{2}$)=$\frac{3x-1}{4}$,推出EM=BE-BM=x-$\frac{3x-1}{4}$=$\frac{x+1}{4}$,由△EOM∽△EBO,可得OE2=EM•EB,由此列出方程即可解決問題.
解答 解:如圖,連接BD交AE于O,連接EG,作OM⊥BC于M,DN⊥BC于N.
∵AD∥BC,
∴∠DAE=∠AEB,
∵∠EAD=∠EAB,
∴∠EAB=∠AEB,
∴AB=BE,∵AD=AB,
∴AD=BE,
∴四邊形ABED是平行四邊形,∵AB=AD,
∴四邊形ABED是菱形,
∴BD⊥AE,OA=OE,
∴GA=GE,
∴∠GAE=∠GEA,
∴∠CGE=2∠GAE,∵∠EDC=2∠CAE,
∴∠FGE=∠FDC,
∵∠GFE=∠DFC,
∴∠GEF=∠DCF,
∵DG=DG,DA=DE,GA=GE,
∴△GDA≌△DGE,
∴∠DAG=∠DEG=∠DCF,
∴DA=DC,設(shè)AB=AD=DC=DE=BE=x,則EC=x-1,
∵OB=OD,OM∥DN,
∴BM=MN,
∵DE=DC,DN⊥EC,
∴EN=NC=$\frac{1}{2}$(x-1),
∴BM=$\frac{1}{2}$BN=$\frac{1}{2}$(x+$\frac{1}{2}$x-$\frac{1}{2}$)=$\frac{3x-1}{4}$,
∴EM=BE-BM=x-$\frac{3x-1}{4}$=$\frac{x+1}{4}$,
由△EOM∽△EBO,可得OE2=EM•EB,
∴3=$\frac{x+1}{4}$•x,
∴x2+x-12=0,
∴x=3或-4(舍棄),
∴BC=BE+EC=3+2=5,
故答案為5.
點評 本題考查相似三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)、菱形的判定和性質(zhì)、全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加輔助線,構(gòu)造全等三角形或相似三角形解決問題,學(xué)會利用參數(shù),構(gòu)建方程解決問題,屬于中考填空題中的壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x1•x2<0 | B. | x1•x3<0 | C. | x2•x3<0 | D. | x1+x2<0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 m | B. | 10 m | C. | 12 m | D. | 14 m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com