【題目】已知,拋物線y=ax+bx+4與x軸交于點A(-3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉(zhuǎn),點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;
(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F(xiàn),E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.
【答案】(1)拋物線的解析式為;
(2)點G的坐標 或
(3)點F的坐標為, ,,
【解析】
試題(1)將A(-3,0)和B(2,0)兩點代入解析式,求出a、b的值,即可求得拋物線的解析式;(2))設點G的坐標為,過點D作DH⊥對稱軸于點H,因點D是BC的中點,可得點D的坐標為,,由折疊的性質(zhì)可得DH=DB,根據(jù)勾股定理可得 ,解得y的值,即可得點G的坐標;(3)分當BE為對角線和BE為菱形的邊時兩種情況討論求解即可.
試題解析:
(1)由題意得 ,
解得,
∴
(2)設點G的坐標為
過點D作DH⊥對稱軸于點H
∵點D是BC的中點
∴點D的坐標為,
由折疊得,DH=DB
∴
∴
∴點G的坐標為或
(3)①當BE為對角線時,因為菱形的對角線互相垂直平分,所以此時D即為對稱軸與AC的交點,F為點D關(guān)于x軸的對稱點
設
∵C,A
∴
∴
∴
∴當時,
∴D
∴F
②當BE為菱形的邊時,有DF∥BE
I)當點D在直線BC上時
易得
設D,則點F
∵四邊形BDFE是菱形
∴FD=DB
根據(jù)勾股定理得,
解得:,
∴F或
II)當點D在直線AC上時
設D,則點F
∵四邊形BFDE是菱形
∴FD=FB
根據(jù)勾股定理得,
解得:(舍去),
∴F
綜上所述,點F的坐標分別為:, ,
,
科目:初中數(shù)學 來源: 題型:
【題目】直角三角形的鐵片ABC的兩條直角邊BC,AC的長分別為3cm和4cm,如圖所示分別采用⑴,⑵兩種方法,剪去一塊正方形鐵片,為了使剪去正方形鐵片后剩下的邊角料較少,試比較哪一種剪法較為合理,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則△BCG的周長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線(a ≠ 0)滿足條件:(1);(2);
(3)與x軸有兩個交點,且兩交點間的距離小于2.以下有四個結(jié)論:①;
②;③;④,其中所有正確結(jié)論的序號是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象與y=x-1的圖象平行,且經(jīng)過點(2,6).
(1)求一次函數(shù)y=kx+b的表達式.
(2)求這個一次函數(shù)y=kx+b與坐標軸的兩個交點坐標,并在直角坐標系中畫出這個函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于A(-1,0),B(3,0)兩點,與軸交于點C,頂點為D,下列結(jié)論正確的是( )
A. abc<0 B. 3a+c=0 C. 4a-2b+c<0 D. 方程ax2+bx+c=-2(a≠0)有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,O為坐標原點,點A(3,4),點B(6,0).
(1)如圖①,求AB的長;
(2)如圖2,把圖①中的△ABO繞點B順時針旋轉(zhuǎn),使O的對應點M恰好落在OA的延長線上,N是點A旋轉(zhuǎn)后的對應點;
①求證:四邊形AOBN是平行四邊形;
②求點N的坐標.
(3)點C是OB的中點,點D為線段OA上的動點,在△ABO繞點B順時針旋轉(zhuǎn)過程中,點D的對應點是P,求線段CP長的取值范圍.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一塊長方形鏡面玻璃的四周,鑲上與它的周長相等的邊框,制成一面鏡子.鏡子的長與寬的比是3:1.已知鏡面玻璃的價格是每平方米100元,邊框的價格是每米20元,另外制作這面鏡子還需加工費55元.如果制作這面鏡子共花了210元,求這面鏡子的長是__________,寬是___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格中,△OAB 的頂點坐標分別為 O(0,0)、A(﹣2,﹣1)、B(﹣1,﹣3),△O1A1B1 與△OAB 是以點 P 為位似中心的位似圖形.
(1)位似中心 P 的坐標是 ,△O1A1B1與△OAB 的相似比為 ;
(2)以原點 O 為位似中心,在 y 軸的左側(cè)畫出△OAB 的另一個位似三角形,使它與△OAB 的相似比為 2:1,并寫出點 B 的對應點的坐標是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com