【題目】如圖,在正方形ABCD中,,以AB為直徑作半圓O,點P從點A出發(fā),沿AD方向以每秒1個單位的速度向點D運動,點Q從點C出發(fā),沿C8方向以每秒3個單位的速度向點B運動,兩點同時開始運動,當(dāng)一點到達終點后,另一點也隨之停止運動。設(shè)運動時間為.

(1)設(shè)點M為半圓上任意一點,則DM的最大值為______,最小值為______.

(2)設(shè)PQ交半圓于點F和點G(F在點G的上方),當(dāng)時,求的長度;

(3)在運動過程中,PQ和半圓能否相切?若相切,請求出此時l的值,若不能相切,請說明理由;

(4)N是半圓上一點,且,當(dāng)運動時,PQ與半圓的交點恰好為點N,直接寫出此時t的值。

【答案】(1),(2)4;(3)不能相切;(4)當(dāng)運動時,與半圓的交點恰好為點.

【解析】

(1) 找出DM最大和最小的位置,即可得出結(jié)論;(2)先確定出AP=3,進而得出∠OFE=30°,即可得出∠FOG=120°,最后用弧長公式即可得出結(jié)論;(3)假設(shè)PQ與半圓相切,進而表示出PQ=12-2tQH=12-4t,再用勾股定理建立122+12-4t2=12-2t2,判斷出出此方程無解,即可得出結(jié)論.(4)先判斷出0≤t≤4,再利用S扇形BON=6π,求出∠BON=60°,再判斷出AP始終小于AI,最后得出,建立方程即可得出結(jié)論.

解:(1)如圖,連接OD,此時DM最小,

中,,

;

當(dāng)點M和點B重合時,連接BD,

DM最大

故答案為:,

(2)四邊形ABCD是正方形,

,,

當(dāng)時,四邊形ABQP是矩形,

,,

,

,解得

,

如圖1,設(shè)PQ交半圓于F,G,過點O于點E,連接OF、OG

,

,

的長度

(3)不能相切.

理由:若PQ與半圓O相切,設(shè)切點為點S,如圖2

由切線長定理,得,

過點P于點H,

四邊形APHB是矩形,

,

∵在中,,

即:.

,此方程無解,

在運動過程中,和半圓不能相切;

(4)∵點是以每秒3個單位的速度向點運動,.

,

∵點是以每秒1個單位的速度向點運動,

.

如圖3,過點,交于點,交于點,過點于點,則四邊形和四邊形都是矩形,

.

,

,.

當(dāng)點運動到點時,,不符合題意,

始終小于,

,,

,

,.

,

.

,解得,

,

當(dāng)運動時,與半圓的交點恰好為點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】群芳雅苑花卉基地出售兩種花卉,其中馬蹄蓮每株4.5元,康乃馨每株6元.如果同一客戶所購的馬蹄蓮數(shù)量多于1000株,那么所有的馬蹄蓮每株還可優(yōu)惠0.3元.現(xiàn)某鮮花店向群芳雅苑花卉基地采購馬蹄蓮8001200株、康乃馨若干株本次采購共用了9000元.然后再以馬蹄蓮每株5.5元、康乃馨每株8元的價格賣出.(注:8001200株表示采購株數(shù)大于或等于800株,且小于或等于1200株;利潤=銷售所得金額﹣進貨所需金額)

1)設(shè)鮮花店銷售完這兩種鮮花獲得的利潤為y元,采購馬蹄蓮x株,求yx之間的函數(shù)關(guān)系式;

2)若該鮮花店購進的馬蹄蓮多于1000株,采購馬蹄蓮多少時才能使獲得的利潤不少于2890元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】足球運球是中考體育必考項目之一蘭州市某學(xué)校為了解今年九年級學(xué)生足球運球的掌握情況,隨機抽取部分九年級學(xué)生足球運球的測試成績作為一個樣本,按AB,CD四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.

1)本次一共抽取了幾名九年級學(xué)生?

2)補全條形統(tǒng)計圖;

3)在扇形統(tǒng)計圖中,C對應(yīng)的扇形的圓心角是幾度?

4)該校九年級有300名學(xué)生,請估計足球運球測試成績達到A級的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線軸交于點,與軸交于點,拋物線經(jīng)過點、

(1)滿足的關(guān)系式及的值.

(2)當(dāng)時,若的函數(shù)值隨的增大而增大,求的取值范圍.

(3)如圖,當(dāng)時,在拋物線上是否存在點,使的面積為1?若存在,請求出符合條件的所有點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對稱軸如圖所示,且拋物線過點C(0,c).

(1)當(dāng)c=﹣3時,點(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;

(2)若拋物線與x軸有兩個交點,自左向右分別為點A、B,且OA=OB,求拋物線的解析式;

(3)當(dāng)﹣1<x<0時,拋物線與x軸有且只有一個公共點,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于兩點,其中點坐標(biāo)為,與軸交于點.

1)求拋物線的函數(shù)表達式;

2)如圖①,連接,點在拋物線上,且滿足.求點的坐標(biāo);

3)如圖②,點軸下方拋物線上任意一點,點是拋物線對稱軸與軸的交點,直線分別交拋物線的對稱軸于點、.請問是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方法選擇

如圖①,四邊形的內(nèi)接四邊形,連接,,.求證:.

小穎認為可用截長法證明:在上截取,連接

小軍認為可用補短法證明:延長至點,使得

請你選擇一種方法證明.

(2)類比探究

(探究1

如圖②,四邊形的內(nèi)接四邊形,連接,的直徑,.試用等式表示線段,之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(探究2

如圖③,四邊形的內(nèi)接四邊形,連接.若的直徑,,則線段,之間的等量關(guān)系式是______

(3)拓展猜想

如圖④,四邊形的內(nèi)接四邊形,連接,.若的直徑,,則線段,,之間的等量關(guān)系式是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別在正三角形的三邊上,且也是正三角形.若的邊長為,的邊長為,則的內(nèi)切圓半徑為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級共有360名學(xué)生.為了解該校九年級學(xué)生每周運動的時間,從中隨機抽取了若干名學(xué)生進行問卷調(diào)查,并將獲得的數(shù)據(jù)(每周運動的時間,單位:小時)進行整理、描述和分析.下面給出了部分信息.

I.學(xué)生每周運動的時間的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:1≤x<33≤x<5,5≤x<77≤x<9,9≤x<1111≤x≤13)

.學(xué)生每周運動的時間在7≤x<9這一組的數(shù)據(jù)是:

7,72,74,7575,76,7878,8,82,84,85,86,88根據(jù)以上信息,解答下列問題:

1)求這次被抽取的學(xué)生數(shù)。

2)寫出被抽取學(xué)生每周運動的時間的中位數(shù).

3)根據(jù)此次問卷調(diào)查結(jié)果,估計該校九年級全體學(xué)生每周運動的時間超過7.9小時的學(xué)生有多少人?

查看答案和解析>>

同步練習(xí)冊答案