【題目】如圖在⊙O中,BC=2,AB=AC,點(diǎn)D為AC上的動(dòng)點(diǎn),且cosB=.
(1)求AB的長度;
(2)求ADAE的值;
(3)過A點(diǎn)作AH⊥BD,求證:BH=CD+DH.
【答案】(1)AB=;(2)ADAE =10;(3)見解析.
【解析】
(1)作AM垂直于BC,由AB=AC,利用三線合一得到CM等于BC的一半,求出CM的長,再由cosB的值,利用銳角三角函數(shù)定義求出AB的長即可;
(2)連接DC,由等邊對等角得到一對角相等,再由圓內(nèi)接四邊形的性質(zhì)得到一對角相等,根據(jù)一對公共角,得到三角形EAC與三角形CAD相似,由相似得比例求出所求即可;
(3)在BD上取一點(diǎn)N,使得BN=CD,利用SAS得到三角形ACD與三角形ABN全等,由全等三角形對應(yīng)邊相等及等量代換即可得證.
(1)作AM⊥BC,
∵AB=AC,AM⊥BC,BC=2BM,
∴CM=BC=1,
∵cosB=,
在Rt△AMB中,BM=1,
∴AB=;
(2)連接DC,
∵AB=AC,
∴∠ACB=∠ABC,
∵四邊形ABCD內(nèi)接于圓O,
∴∠ADC+∠ABC=180°,
∵∠ACE+∠ACB=180°,
∴∠ADC=∠ACE,
∵∠CAE公共角,
∴△EAC∽△CAD,
∴,
∴ADAE=AC2=10;
(3)在BD上取一點(diǎn)N,使得BN=CD,
在△ABN和△ACD中 AB=AC,∠3=∠1,BN=CD,
∴△ABN≌△ACD(SAS),
∴AN=AD,
∵AN=AD,AH⊥BD,
∴NH=HD,
∵BN=CD,NH=HD,
∴BN+NH=CD+HD=BH.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(t,1)為函數(shù)y=ax2+bx+4(a,b為常數(shù),且a≠0)與y=x圖象的交點(diǎn).
(1)求t;
(2)若函數(shù)y=ax2+bx+4的圖象與x軸只有一個(gè)交點(diǎn),求a,b;
(3)若1≤a≤2,設(shè)當(dāng)≤x≤2時(shí),函數(shù)y=ax2+bx+4的最大值為m,最小值為n,求m﹣n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E,F(xiàn)分別是△ABC三邊的中點(diǎn),則下列判斷錯(cuò)誤的是( )
A. 四邊形AEDF一定是平行四邊形 B. 若AD平分∠A,則四邊形AEDF是正方形
C. 若AD⊥BC,則四邊形AEDF是菱形 D. 若∠A=90°,則四邊形AEDF是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,∠BAC=120°,點(diǎn)D、F分別為AB、AC中點(diǎn),ED⊥AB,GF⊥AC,若BC=15cm,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,等腰△ODE中,OE=DE,點(diǎn)A、D在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,點(diǎn)B、E在反比例函數(shù)y=的圖象上,OA=5,OC=1,則△ODE的面積為( 。
A.2.5B.5C.7.5D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每個(gè)小方格都是邊長為1個(gè)單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上,
①寫出A、B、C的坐標(biāo).
②以原點(diǎn)O為對稱中心,畫出△ABC關(guān)于原點(diǎn)O對稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ACDE是美國第二十任總統(tǒng)伽菲爾德驗(yàn)證勾股定理時(shí)用到的一個(gè)圖形,a,b,c是Rt△ABC和Rt△BED邊長,易知AE=,這時(shí)我們把關(guān)于x的形如的一元二次方程稱為“勾系一元二次方程”.
請解決下列問題:
(1)判斷方程是否是 “勾系一元二次方程”;并說明理由.
(2)求證:關(guān)于的“勾系一元二次方程” 必有實(shí)數(shù)根;
(3)如圖2,已知AB、CD是半徑為5的⊙O的兩條平行弦,AB=2a,CD=2b,a≠b,關(guān)于x的方程是“勾系一元二次方程”,求∠BAC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為的正方形中,點(diǎn)為靠近點(diǎn)的四等分點(diǎn),點(diǎn)為中點(diǎn),將沿翻折得到連接則點(diǎn)到所在直線距離為________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com