已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(A點在B點的左側(cè)),頂點為P.
(1)求A、B、P三點坐標(biāo);
(2)在下面的直角坐標(biāo)系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當(dāng)x取何值時,函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點的個數(shù),并說明理由.
(1)∵y=-x2+4x-3=-(x-1)(x-3)=-(x-2)2+1,
∴A(1,0),B(3,0),P(2,1).

(2)作圖如下,由圖象可知:當(dāng)1<x<3時,y>0.

(3)由題意列方程組得:
y=-x2+4x-3
y=-2x+6

轉(zhuǎn)化得:x2-6x+9=0,
即x=3,
∴方程的兩根相等,
方程組只有一組解,
∴此拋物線與直線有唯一的公共點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)是(-2,-1),與x軸有兩個交點且交點間的距離是2,則這個拋物線的解析式為y=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知拋物線y=ax2+bx+c過點A(-1,0),且經(jīng)過直線y=x-3與坐標(biāo)軸的兩個交點B、C.
(1)求拋物線的表達式;
(2)若點M在第四象限內(nèi)且在拋物線上,有OM⊥BC,垂足為D,求點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖長為2的線段PQ在x的正半軸上,從P、Q作x軸的垂線與拋物線y=x2交于點P′、Q′.
(1)已知P的坐標(biāo)為(k,0),求直線OP′的函數(shù)解析式;
(2)若直線OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的方程kx2+(3k+1)x+3=0.
(1)求證:無論k取任何實數(shù)時,方程總有實數(shù)根;
(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個交點的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值;
(3)在(2)的條件下,設(shè)拋物線的頂點為M,直線y=-2x+9與y軸交于點C,與直線OM交于點D.現(xiàn)將拋物線平移,保持頂點在直線OD上.若平移的拋物線與射線CD(含端點C)只有一個公共點,求它的頂點橫坐標(biāo)的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知關(guān)于x的一元二次方程
1
2
x2+(m-2)x+2m-6=0

(1)求證:無論m取任何實數(shù),方程都有兩個實數(shù)根;
(2)當(dāng)m<3時,關(guān)于x的二次函數(shù)y=
1
2
x2+(m-2)x+2m-6
的圖象與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,且2AB=3OC,求m的值;
(3)在(2)的條件下,過點C作直線lx軸,將二次函數(shù)圖象在y軸左側(cè)的部分沿直線l翻折,二次函數(shù)圖象的其余部分保持不變,得到一個新的圖象,記為G.請你結(jié)合圖象回答:當(dāng)直線y=
1
3
x+b
與圖象G只有一個公共點時,b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知一動圓的圓心P在拋物線y=
1
2
x2-3x+3上運動.若⊙P半徑為1,點P的坐標(biāo)為(m,n),當(dāng)⊙P與x軸相交時,點P的橫坐標(biāo)m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某商場將進價為1800元的電冰箱以每臺2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降價50元,平均每天就能多售出4臺.
(1)設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤為y元,求y與x之間的函數(shù)關(guān)系式(不要求寫自變量的取值范圍).
(2)商場想在這種冰箱的銷售中每天盈利8000元,同時又要使顧客得到實惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2-5ax+4經(jīng)過△ABC的三個頂點,已知BCx軸,點A在x軸的負半軸上,點C在y軸上,且AC=BC.
(1)求拋物線的對稱軸;
(2)求A點坐標(biāo)并求拋物線的解析式;
(3)若點P在x軸下方且在拋物線對稱軸上的動點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P坐標(biāo);不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案