【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,過點D作⊙O的切線BC于點M,切點為N,則DM的長為(
A.
B.
C.
D.2

【答案】A
【解析】解:連接OE,OF,ON,OG, 在矩形ABCD中,
∵∠A=∠B=90°,CD=AB=4,
∵AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點,
∴∠AEO=∠AFO=∠OFB=∠BGO=90°,
∴四邊形AFOE,F(xiàn)BGO是正方形,
∴AF=BF=AE=BG=2,
∴DE=3,
∵DM是⊙O的切線,
∴DN=DE=3,MN=MG,
∴CM=5﹣2﹣MN=3﹣MN,
在Rt△DMC中,DM2=CD2+CM2 ,
∴(3+NM)2=(3﹣NM)2+42 ,
∴NM=
∴DM=3+ = ,
故選A.

連接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分別與⊙O相切于E,F(xiàn),G三點得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四邊形AFOE,F(xiàn)BGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出結果.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】考試前,同學們總會采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對該校九年級的部分同學做了一次內容為“最適合自己的考前減壓方式”的調查活動,學校將減壓方式分為五類,同學們可根據自己的情況必選且只選其中一類.學校收集整理數(shù)據后,繪制了圖1和圖2兩幅不完整的統(tǒng)計圖,請根據統(tǒng)計圖中信息解答下列問題:
(1)這次抽樣調查中,一共抽查了多少名學生?
(2)請補全條形統(tǒng)計圖;
(3)請計算扇形統(tǒng)計圖中“享受美食”所對應扇形的圓心角的度數(shù);
(4)根據調查結果,估計該校九年級500名學生中采用“聽音樂”來減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經過點(﹣1,﹣4),則下列結論中錯誤的是(
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D.關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖,紙片□ABCD中,AD=5,S□ABCD=15,過點AAEBC,垂足為E,沿AE剪下△ABE,將它平移至△DCE'的位置,拼成四邊形AEE'D,則四邊形AEE'D的形狀為( )

A.平行四邊形 B.菱形 C.矩形 D.正方形

(2)如圖,在(1)中的四邊形紙片AEE'D中,在EE'上取一點F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE'F'的位置,拼成四邊形AFF'D

①求證:四邊形AFF'D是菱形;

②求四邊形AFF'D的兩條對角線的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(閱讀理解)

A、B、C為數(shù)軸上三點,如果點CA、B之間且到A的距離是點CB的距離3倍,那么我們就稱點C{ A,B }的奇點.

例如,如圖1,點A表示的數(shù)為﹣3,點B表示的數(shù)為1.表示0的點C到點A的距離是3,到點B的距離是1,那么點C{ A,B }的奇點;又如,表示﹣2的點D到點A的距離是1,到點B的距離是3,那么點D就不是{A,B }的奇點,但點D{B,A}的奇點.

(知識運用)

如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為﹣3,點N所表示的數(shù)為5.

(1)數(shù)   所表示的點是{ M,N}的奇點;數(shù)   所表示的點是{N,M}的奇點;

(2)如圖3,A、B為數(shù)軸上兩點,點A所表示的數(shù)為﹣50,點B所表示的數(shù)為30.現(xiàn)有一動點P從點B出發(fā)向左運動,到達點A停止.P點運動到數(shù)軸上的什么位置時,P、AB中恰有一個點為其余兩點的奇點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察圖形:填空

(1)表示:1+3=4=22

(2)表示:1+3+5=9=32;

(3)表示:1+3+5+7=16=42;

以此類推,(4)表示:   ;

解決問題:求1+3+5+7+……+2019的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為acm,E、F分別是BC、CD的中點,連接BF、DE,則圖中陰影部分的面積是cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若把邊長為1的正方形ABCD的四個角(陰影部分)剪掉,得一四邊形A1B1C1D1 . 試問怎樣剪,才能使剩下的圖形仍為正方形,且剩下圖形的面積為原來正方形面積的 ,請說明理由.(寫出證明及計算過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A的坐標是(﹣1,0),點B的坐標是(9,0),以AB為直徑作⊙O′,交y軸的負半軸于點C,連接AC、BC,過A、B、C三點作拋物線.

(1)求點C的坐標及拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,求點D的坐標;并直接寫出直線BC、直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD,若存在,請求出點P的坐標,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案