【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF.
(2)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心 點(diǎn),按順時(shí)針?lè)较蛐D(zhuǎn) 度得到.
【答案】(1)證明見(jiàn)解析;(2)A;90
【解析】整體分析:
(1)根據(jù)正方形的性質(zhì),用SAS證明△ADE≌△ABF;(2)△ADE與△ABF的公共頂點(diǎn)是旋轉(zhuǎn)中心,對(duì)應(yīng)線段的夾角是旋轉(zhuǎn)角.
解:(1)∵四邊形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
而F是CB的延長(zhǎng)線上的點(diǎn),
∴∠ABF=90°,
在△ADE和△ABF中,
,
∴△ADE≌△ABF(SAS);
(2)△ABF可以由△ADE繞旋轉(zhuǎn)中心點(diǎn)A,按順時(shí)針?lè)较蛐D(zhuǎn)90度得到.
故答案為A,90.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AB=8,BC=6,以點(diǎn)A為圓心,5為半徑作圓,點(diǎn)M為圓A上一動(dòng)點(diǎn),連接CM,DM,則CM+MD的最小值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)實(shí)數(shù)a,b,c滿足a>b>c(ac<0),且|c|<|b|<|a|,則|x-a|+|x+b|+|x-c|的最小值為( )
A. B. |b| C. a+b D. -c-a
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y1=﹣x﹣1與y軸交于點(diǎn)A,一次函數(shù)y2=x+3圖象與y軸交于點(diǎn)B,與直線l交于點(diǎn)C.
(1)畫(huà)出一次函數(shù)y2=x+3的圖象;
(2)求點(diǎn)C坐標(biāo);
(3)如果y1>y2,那么x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,CE是外角∠ACD的平分線,BE是∠ABC的平分線.
(1)求證:∠A=2∠E,以下是小明的證明過(guò)程,請(qǐng)?jiān)诶ㄌ?hào)里填寫(xiě)理由.
證明:∵∠ACD是△ABC的一個(gè)外角,∠2是△BCE的一個(gè)外角,(已知)
∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(_________)
∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性質(zhì))
∵CE是外角∠ACD的平分線,BE是∠ABC的平分線(已知)
∴∠ACD=2∠2,∠ABC=2∠1(_______)
∴∠A=2∠2﹣2∠1(_________)
=2(∠2﹣∠1)(_________)
=2∠E(等量代換)
(2)如果∠A=∠ABC,求證:CE∥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
若A、B、C為數(shù)軸上三點(diǎn),若點(diǎn)C到A的距離是點(diǎn)C到B的距離2倍,我們就稱點(diǎn)C是【A,B】的好點(diǎn).
例如,如圖1,點(diǎn)A表示的數(shù)為-1,點(diǎn)B表示的數(shù)為2.表示1的點(diǎn)C到點(diǎn)A的距離是2,到點(diǎn)B的距離是1,那么點(diǎn)C是【A,B】的好點(diǎn);又如,表示0的點(diǎn)D到點(diǎn)A的距離是1,到點(diǎn)B的距離是2,那么點(diǎn)D就不是【A,B】的好點(diǎn),但點(diǎn)D是【B,A】的好點(diǎn).
知識(shí)運(yùn)用:如圖2,M、N為數(shù)軸上兩點(diǎn),點(diǎn)M所表示的數(shù)為-2,點(diǎn)N所表示的數(shù)為4.
(1)數(shù)______所表示的點(diǎn)是【M,N】的好點(diǎn);
(2)如圖3,A、B為數(shù)軸上兩點(diǎn),點(diǎn)A所表示的數(shù)為-20,點(diǎn)B所表示的數(shù)為40.現(xiàn)有一只電子螞蟻P從點(diǎn)B出發(fā),以2個(gè)單位每秒的速度向左運(yùn)動(dòng),到達(dá)點(diǎn)A停止.當(dāng)t為何值時(shí),P、A和B中恰有一個(gè)點(diǎn)為其余兩點(diǎn)的好點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某種產(chǎn)品的進(jìn)價(jià)為每件40元,現(xiàn)在的售價(jià)為每件60元,每星期可賣出300件.市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每降價(jià)1元,每星期可多賣出20件,由于供貨方的原因銷量不得超過(guò)380件,設(shè)這種產(chǎn)品每件降價(jià)x元(x為整數(shù)),每星期的銷售利潤(rùn)為w元.
(1)求w與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)該產(chǎn)品銷售價(jià)定為每件多少元時(shí),每星期的銷售利潤(rùn)最大?最大利潤(rùn)是多少元?
(3)該產(chǎn)品銷售價(jià)在什么范圍時(shí),每星期的銷售利潤(rùn)不低于6000元,請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小王家新買的一套住房的建筑平面圖如圖所示(單位:米).
(1)這套住房的建筑總面積是多少平方米?(用含a,b,c的式子表示)
(2)若a=9,b=4,c=7,試求出小王家這套住房的具體面積.
(3)地面裝修要鋪設(shè)瓷磚,公司報(bào)價(jià)是:客廳地面每平方米200元,臥室地面每平方米150元,廚房地面每平方米120元,衛(wèi)生間地面每平方米100元.在(2)的條件下,小王一共要花多少錢?
(4)這套住房的售價(jià)為每平方米4500元,購(gòu)房時(shí)首付款為房?jī)r(jià)的40%,余款向銀行申請(qǐng)貸款,在(2)的條件下,小宇家購(gòu)買這套住房時(shí)向銀行申請(qǐng)貸款的金額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=m(m是大于0的常數(shù)),BC=8,E為線段BC上的動(dòng)點(diǎn)(不與B、C重合).連結(jié)DE,作EF⊥DE,EF與射線BA交于點(diǎn)F,設(shè)CE=x,BF=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)若m=8,求x為何值時(shí),y的值最大,最大值是多少?
(3)若,要使△DEF為等腰三角形,m的值應(yīng)為多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com