(2012•拱墅區(qū)一模)把兩個(gè)直角邊長(zhǎng)分別為3、4與9、12的Rt△ADE和Rt△ABC按照如圖所示的位置放置,已知DE=4,AC=12,且E,A,C三點(diǎn)在同一直線上,連接BD,取BD的中點(diǎn)M,連接ME,MC,則△EMC與△DAB面積的比值為(  )
分析:過(guò)D作DF⊥BC于F,取EC的中點(diǎn)N,連接MN,得出四邊形DECF是矩形,求出DF=EC=15,CF=DE=4,求出AB=15,AD=5,BD=5
10
,求出∠DAB=90°,求出△DAB的面積是
1
2
×AD×AB=
1
2
×5×15,根據(jù)梯形中位線得出MN∥DE,MN=
1
2
(DE+BC)=
13
2
,推出MN⊥EC,求出△MEC的面積是
1
2
×EC×MN=
13×15
4
,代入求出即可.
解答:解:
過(guò)D作DF⊥BC于F,取EC的中點(diǎn)N,連接MN,
∵∠DEA=∠BCE=∠DFC=90°,
∴四邊形DECF是矩形,
∴DF=EC=3+12=15,CF=DE=4,
∴BF=9-4=5,
在Rt△BAC中,BC=9,AC=12,由勾股定理得:AB=15,
同理AD=5,
在Rt△DFB中,DF=15,BF=5,由勾股定理得BD=5
10
,
∵AD=5,AB=15,
∴AD2+AB2=25+225=250,BD2=250,
∴AD2+AB2=BD2
∴∠DAB=90°,
即△DAB的面積是
1
2
×AD×AB=
1
2
×5×15,
∵∠DEA=∠BCE=90°,
∴DE∥BC,
∵M(jìn)為BD中點(diǎn),N為EC中點(diǎn),
∴MN∥DE,MN=
1
2
(DE+BC)=
1
2
×(4+9)=
13
2
,
∴MN⊥EC,
∴△MEC的面積是
1
2
×EC×MN=
1
2
×(3+12)×
13
2
=
13×15
4
,
∴△EMC與△DAB面積的比是
13×15
4
:(
1
2
×5×15)=13:10,
故選B.
點(diǎn)評(píng):本題考查了梯形的性質(zhì),梯形的中位線,三角形的面積,等腰直角三角形等知識(shí)點(diǎn)的應(yīng)用,通過(guò)做此題培養(yǎng)了學(xué)生運(yùn)用定理進(jìn)行計(jì)算的能力,題目比較好,但有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•拱墅區(qū)一模)下面的展開(kāi)圖能拼成如圖立體圖形的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•拱墅區(qū)一模)如果兩個(gè)三角形的兩條邊和其中一邊上的高分別對(duì)應(yīng)相等,那么這兩個(gè)三角形的第三條邊所對(duì)的角的關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•拱墅區(qū)一模)若關(guān)于x的不等式2x<a的解均為不等式組
6-3x>0
2-
1-x
2
<3
的解,則a為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•拱墅區(qū)一模)有研究稱日本首都圈未來(lái)4年發(fā)生大地震概率約為70%.下面哪一個(gè)陳述最好地反映了這句話的含義( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•拱墅區(qū)一模)若關(guān)于x的方程
x
x-3
+
2
m-x
=2
的解為x=4,則m=
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案