【題目】如圖①,已知線段AB=12cm,點(diǎn)C為AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)D、E分別是AC和BC的中點(diǎn).
(1)若AC=4cm,求DE的長(zhǎng);
(2)試?yán)?/span>“字母代替數(shù)”的方法,說(shuō)明不論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變;
(3)知識(shí)遷移:如圖②,已知∠AOB=120°,過(guò)角的內(nèi)部任一點(diǎn)C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說(shuō)明∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).
【答案】(1)DE=6cm;(2)見(jiàn)解析;(3)見(jiàn)解析.
【解析】試題分析:(1)由AC=4cm,AB=12cm,即可推出BC=8cm,然后根據(jù)點(diǎn)D、E分別是AC和BC的中點(diǎn),即可推出AD=DC,BE=EC,由此即可得到DE的長(zhǎng)度;
(2)設(shè)AC=acm,然后通過(guò)點(diǎn)D、E分別是AC和BC的中點(diǎn),即可推出DE=CD+CE= (AC+BC)= AB,由此即可得到結(jié)論;
(3)由若OD、OE分別平分∠AOC和∠BOC,即可推出∠DOE=∠DOC+∠COE= (∠AOC+∠COB)= ∠AOB,繼而可得到答案.
試題解析:(1)∵AB=12cm,
∴AC=4cm,
∴BC=8cm,
∵點(diǎn)D、E分別是AC和BC的中點(diǎn),
∴CD=2cm,CE=4cm,
∴DE=6cm,
(2)設(shè)AC=acm,
∵點(diǎn)D、E分別是AC和BC的中點(diǎn),
∴DE=CD+CE=(AC+BC)=AB=6cm,
∴不論AC取何值(不超過(guò)12cm),DE的長(zhǎng)不變,
(3)∵OD、OE分別平分∠AOC和∠BOC,
∴∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=∠AOB,
∵∠AOB=120°,
∴∠DOE=60°,
∴∠DOE的度數(shù)與射線OC的位置無(wú)關(guān).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料并回答問(wèn)題:
點(diǎn)A,B在數(shù)軸上分別表示數(shù)a,b,A,B兩點(diǎn)之間的距離表示為AB.
當(dāng)A,B兩點(diǎn)中有一點(diǎn)在原點(diǎn)時(shí):
不妨設(shè)A在原點(diǎn),如圖1,AB=OB=|b|=|a-b|;
當(dāng)A,B兩點(diǎn)都不在原點(diǎn)時(shí):
①如圖2,點(diǎn)A,B都在原點(diǎn)的右邊,AB=OB-OA=|b|-|a|=b-a=|a-b|;
②如圖3,點(diǎn)A,B都在原點(diǎn)左邊,AB=OB-OA=|b|-|a|=(-b)-(-a)=|a-b|;
③如圖4,點(diǎn)A,B在原點(diǎn)的兩邊,AB=OA+OB=|a|+|b|=a+(-b)=|a-b|;
綜上,數(shù)軸上A,B兩點(diǎn)之間的距離AB=|a-b|.
(1)回答問(wèn)題:數(shù)軸上表示2和5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示-2和-5的兩點(diǎn)之間的距離是 ,數(shù)軸上表示1和-3的兩點(diǎn)之間的距離是 ,數(shù)軸上表示x和-1的兩點(diǎn)之間的距離是 .
(2)如圖5,若|a-b|=2013,且OA=2OB,求a+b的值.
(3)結(jié)合兩點(diǎn)之間的距離,若點(diǎn)M表示的數(shù)為x,當(dāng)代數(shù)式|x+1|+|x-2|取最小值時(shí),相應(yīng)x的取值范圍是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖為正三角形ABC與正方形DEFG的重疊情形,其中D、E兩點(diǎn)分別在AB、BC上,且BD=BE.若AC=18,GF=6,則F點(diǎn)到AC的距離為何?( )
A.2
B.3
C.12﹣4
D.6 ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批防PM2.5口罩進(jìn)行抽檢,經(jīng)統(tǒng)計(jì)合格口罩的概率是0.9,若這批口罩共有2000只,則其中合格的大約有__只.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC、BD交于點(diǎn)O,且DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠BAC=30°,AC=4,求菱形OCED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)A(3,0)、B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)如圖1,設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為D,在拋物線的對(duì)稱軸上找一點(diǎn)H,使△CDH的周長(zhǎng)最小,求出H點(diǎn)的坐標(biāo)并求出最小周長(zhǎng)值;
(3)如圖2,連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合),經(jīng)過(guò)A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求面積的最小值及E點(diǎn)坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小聰用100元錢去購(gòu)買筆記本和鋼筆共30件,已知每本筆記本2元,每支鋼筆5元,則小聰最多可以買幾支鋼筆?設(shè)小聰購(gòu)買x支鋼筆,則可列關(guān)于x的一元一次不等式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是線段AO,BO的中點(diǎn),若AC+BD=24厘米,△OAB的周長(zhǎng)是18厘米,則EF為( )
A.3厘米
B.4厘米
C.5厘米
D.6厘米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com