【題目】根據直角三角形的判定的知識解決下列問題
(1)如圖①所示,P是等邊△ABC內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉60°得△BCQ,連接PQ.若PA2+PB2=PC2,證明∠PQC=90°;
(2)如圖②所示,P是等腰直角△ABC(∠ABC=90°)內的一點,連接PA、PB、PC,將△BAP繞B點順時針旋轉90°得△BCQ,連接PQ.當PA、PB、PC滿足什么條件時,∠PQC=90°?請說明.
【答案】
(1)
證明:由旋轉的性質知:BP=BQ、PA=QC,∠ABP=∠CBQ;
∵△ABC是等邊三角形,
∴∠ABC=60°,即∠CBP+∠ABP=60°;
∵∠ABP=∠CBQ,
∴∠CBP+∠CBQ=60°,即∠PBQ=60°;
又∵BP=BQ,∴△BPQ是等邊三角形;
∴BP=PQ;
∵PA2+PB2=PC2,即PQ2+QC2=PC2;
∴△PQC是直角三角形,且∠PQC=90°
(2)
解:PA2+2PB2=PC2;理由如下:
同(1)可得:△PBQ是等腰直角三角形,則PQ= PB,即PQ2=2PB2;
由旋轉的性質知:PA=QC;
在△PQC中,若∠PQC=90°,則PQ2+QC2=PC2,即PA2+2PB2=PC2;
故當PA2+2PB2=PC2時,∠PQC=90°.
【解析】(1)由旋轉的性質可得到的條件是:①BP=BQ、PA=QC,②∠ABP=∠CBQ;
由②可證得∠PBQ=∠CBP+∠CBQ=∠CBP+∠ABP=∠ABC=60°,聯(lián)立BP=BQ,即可得到△BPQ是等邊三角形的結論,則BP=PQ;將等量線段代換后,即可得出PQ2+QC2=PC2,由此可證得∠PQC=90°;(2)由(1)的解題思路知:△PBQ是等腰Rt△,則PQ2=2PB2,其余過程同(1),只不過所得結論稍有不同.此題考查了等邊三角形、等腰直角三角形的性質,旋轉的性質,直角三角形的判定及勾股定理的應用等知識,能夠正確的判斷出△BPQ的形狀,從而得到BP、PQ的數(shù)量關系,是解答此題的關鍵.
【考點精析】解答此題的關鍵在于理解等邊三角形的性質的相關知識,掌握等邊三角形的三個角都相等并且每個角都是60°,以及對勾股定理的逆定理的理解,了解如果三角形的三邊長a、b、c有下面關系:a2+b2=c2,那么這個三角形是直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】下列事件中,屬于必然事件的是( 。
A. 拋擲1個均勻的骰子,出現(xiàn)4點向上 B. 任意數(shù)的絕對值都是正數(shù)
C. 兩直線被第三條直線所截,內錯角相等 D. 13人中至少有2人的生日在同一個月
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的二次函數(shù)的圖象與x軸從左到右交于A,B兩點,且這兩點關于原點對稱.
(1)求k的值;
(2)在(1)的條件下,若反比例函數(shù)的圖象與二次函數(shù)的圖象從左到右交于Q,R,S三點,且點Q的坐標為(-1,-1),點R(, ),S(, )中的縱坐標, 分別是一元二次方程的解,求四邊形AQBS的面積;
(3)在(1),(2)的條件下,在x軸下方是否存在二次函數(shù)圖象上的點P使得=2,若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)寫成省略加號和的形式為( )
A.﹣2+10﹣6﹣5
B.﹣2﹣10﹣6+5
C.﹣2+10﹣6+5
D.2+10﹣6﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解一元二次方程x2﹣2x﹣5=0,下列配方正確的是( )
A.(x+1)2=6
B.(x+1)2=9
C.(x﹣1)2=6
D.(x﹣1)2=9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李明對某校九年級(2)班進行了一次社會實踐活動調查,從調查的內容中抽出兩項.
調查一:對小聰、小亮兩位同學的畢業(yè)成績進行調查,其中畢業(yè)成績按綜合素質、考試成績、體育測試三項進行計算,計算的方法按4:4:2進行,畢業(yè)成績達80分以上為“優(yōu)秀畢業(yè)生”,小聰、小亮的三項成績如右表:(單位:分)
綜合素質 | 考試成績 | 體育測試 | |
滿分 | 100 | 100 | 100 |
小聰 | 72 | 98 | 60 |
小亮 | 90 | 75 | 95 |
調查二:對九年級(2)班50名同學某項跑步成績進行調查,并繪制了一個不完整的扇形統(tǒng)計圖,請你根據以上提供的信息,解答下列問題:
(1)小聰和小亮誰能達到“優(yōu)秀畢業(yè)生”水平?哪位同學的畢業(yè)成績更好些?
(2)升入高中后,請你對他倆今后的發(fā)展給每人提一條建議.
(3)扇形統(tǒng)計圖中“優(yōu)秀率”是多少?
(4)“不及格”在扇形統(tǒng)計圖中所占的圓心角是多少度?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com