【題目】已知點(diǎn)A1,m),B2,mn)(n0)在同一個(gè)函數(shù)的圖象上,則這個(gè)函數(shù)可能是( 。

A.yxB.y=﹣C.yx2D.y=﹣x2

【答案】D

【解析】

B(1,m),C(2,mn)可知,在y軸的右側(cè),yx的增大而減小,據(jù)此判斷即可.

n0,

mnm

∵點(diǎn)A(1m),B(2mn)(n0)在同一個(gè)函數(shù)的圖象上,

∴在y軸的右側(cè),yx的增大而減小,

A.對(duì)于函數(shù)y=x,yx的增大而增大,故不可能;

B.對(duì)于函數(shù)y,圖象位于二、四象限,每個(gè)象限內(nèi)yx的增大而增大,故不可能;

C.對(duì)于函數(shù)y=x2,當(dāng)x0時(shí),yx的增大而增大,故不可能;

D.對(duì)于函數(shù)y=x2,當(dāng)x0時(shí),yx的增大而減小,故有可能.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,將ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′.若∠CC′B′32°,則∠B的大小是(

A.32°B.64°C.77°D.87°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)的頂點(diǎn)坐標(biāo)為(0,1)且經(jīng)過(guò)點(diǎn)A1,2),直線(xiàn)y3x4經(jīng)過(guò)點(diǎn)B,n),與y軸交點(diǎn)為C

1)求拋物線(xiàn)的解析式及n的值;

2)將直線(xiàn)BC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的直線(xiàn)的解析式;

3)如圖2將拋物線(xiàn)繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到新曲線(xiàn),新曲線(xiàn)與直線(xiàn)BC交于點(diǎn)M、N,點(diǎn)M在點(diǎn)N的上方,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞其右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖位置,繼續(xù)繞右下角的頂點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)90°至圖位置,以此類(lèi)推,這樣連續(xù)旋轉(zhuǎn)2017次.若AB=4,AD=3,則頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑總長(zhǎng)為( )

A. 2017π B. 2034π C. 3024π D. 3026π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是等邊ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC.將BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°ADC,連接OD

1)求證:COD是等邊三角形;

2)當(dāng)AOD是直角三角形且∠ADO=90°時(shí),求α的度數(shù);

3)當(dāng)α=110°125°140°時(shí),判斷AOD的形狀,請(qǐng)選擇其中一種情況說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在正方形ABCD中,E,F,GH分別是AD,DC,BC,CD上的點(diǎn),連接EF,GH

EFGH,則必有EF=GH

EF=GH,則必有EFGH

判斷上述兩個(gè)命題是否成立,若成立,請(qǐng)說(shuō)明理由;若不成立,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分10分)

如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.

(1)根據(jù)以上尺規(guī)作圖的過(guò)程,求證四邊形ABEF是菱形;

(2)若菱形ABEF的周長(zhǎng)為16,AE=4,求C的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,矩形ABCD中,過(guò)對(duì)角線(xiàn)BD中點(diǎn)O的直線(xiàn)分別交AB,CD邊于點(diǎn)EF

1)求證:四邊形BEDF是平行四邊形;

2)只需添加一個(gè)條件,即______,可使四邊形BEDF為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線(xiàn)AB, AB 之間的距離為 2 ,C、D 是直線(xiàn)兩個(gè)動(dòng)點(diǎn)(點(diǎn) C D 點(diǎn)的左側(cè)),且 AB=CD=5.連接 AC、BCBD,將ABC 沿 BC 折疊得到A′BC.若以 A′C、B、D 為頂點(diǎn)的四邊形為矩形,則此矩形相鄰兩邊之和為____

查看答案和解析>>

同步練習(xí)冊(cè)答案