精英家教網 > 初中數學 > 題目詳情
5.直線AB上一點,OM平分∠AOC,ON平分∠BOC,∠BON=28°,則∠BOC=56°,∠BOM=118°,圖中互補的角有5對.

分析 根據余角和補角的概念以及角平分線的定義解答即可.

解答 解:∵ON平分∠BOC,∠BON=28°,
∴∠BOC=2∠BON=56°,
∴∠AOC=180°-∠BOC=124°,
∵OM平分∠AOC,
∴∠MOC=62°,
∴∠BOM=∠BOC+∠MOC=118°,
圖中互補的角有:∠AOC和∠BOC,∠AOM和∠BOM,∠CON和∠BOM,∠BON和∠AON,∠CON和∠AON共5對,
故答案為:56;118;5.

點評 本題考查的是余角和補角的概念,若兩個角的和為90°,則這兩個角互余;若兩個角的和等于180°,則這兩個角互補.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

10.正△ABC的邊長為2,M是AB邊上的中點,P是BC邊上的任意一點,PA+PM的最大值是2+$\sqrt{3}$,最小值是$\sqrt{7}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

16.如圖,郴州北湖公園的小島上有為了紀念唐代著名詩人韓愈而建的韓愈銅像,其底部為A,某人在岸邊的B處測得A在B的北偏東60°的方向上,然后沿岸邊直行200米到達C處,再次測得A在C的北偏東30°的方向上(其中A,B,C在同一平面上).求這個銅像底部A到岸邊BC的距離(結果精確到0.1米,參考數據:$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

13.中學教師巴爾末成功地從光譜數據$\frac{9}{5}$,$\frac{16}{12}$,$\frac{25}{21}$,$\frac{36}{32}$中得到巴爾末公式,從而打開了光譜奧妙的大門,請你按這種規(guī)律寫出第n個數據是$\frac{(n+2)^{2}}{(n+2)^{2}-4}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

20.點P1是P(3,5)關于x軸的對稱點,且一次函數過P1和A(1,-3),
(1)求此一次函數的表達式;
(2)畫出這個一次函數的圖象;
(3)這個一次函數與y軸交點坐標是(0,-2).

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

10.某地區(qū)居民生活用電基本價格為每千瓦時0.50元,若每月用電量超過a千瓦則超過部分按基本電價的80%收費.
(1)某戶八月份用電96千瓦時,共交電費46.4元,求a.
(2)若該用戶九月份的平均電費為0.48元,則九月份共用電多少千瓦?應交電費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

17.已知:如圖所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足為點D,CE⊥AB,垂足為點E.求證:BD=CE.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

14.如圖,矩形內有兩個相鄰的正方形,面積分別是a2和9,那么圖中陰影部分的面積為(  )
A.3a+9B.3a-9C.a2-9D.3a-3

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

15.已知二次函數y=-x2+(m-1)x+m.
(1)證明:不論m取何值,該函數圖象與x軸總有公共點;
(2)若該函數的圖象與y軸交點于(0,3),求出頂點坐標并畫出該函數;
(3)在(2)的條件下,觀察圖象,不等式-x2+(m-1)x+m>3的解集是0<x<2.

查看答案和解析>>

同步練習冊答案