【題目】甲、乙兩人進(jìn)行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分,如圖,甲在O點(diǎn)正上方1m的P處發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達(dá)式y(tǒng)=a(x﹣4)2+h,已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m.

(1)當(dāng)a=﹣ 時(shí),①求h的值;②通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).
(2)若甲發(fā)球過(guò)網(wǎng)后,羽毛球飛行到與點(diǎn)O的水平距離為7m,離地面的高度為 m的Q處時(shí),乙扣球成功,求a的值.

【答案】
(1)解:①當(dāng)a= 時(shí), ,將點(diǎn)P(0,1)代入,得: ×16+h=1,解得:h=

②把x=5代入 ,得: =1.625,∵1.625>1.55,∴此球能過(guò)網(wǎng)


(2)解:把(0,1)、(7, )代入 ,得: ,解得: ,∴a=
【解析】(1)把a(bǔ)的值和點(diǎn)P的坐標(biāo)代入,求出h的值即可;把x=5代入解析式求出函數(shù)值,進(jìn)行比較得到此球能過(guò)網(wǎng);(2)把兩點(diǎn)代入求出a的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2016新疆)如圖,ABCD中,AB=2,AD=1,ADC=60°,將ABCD沿過(guò)點(diǎn)A的直線l折疊,使點(diǎn)D落到AB邊上的點(diǎn)D處,折痕交CD邊于點(diǎn)E

(1)求證:四邊形BCED是菱形;

(2)若點(diǎn)P時(shí)直線l上的一個(gè)動(dòng)點(diǎn),請(qǐng)計(jì)算PD′+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華人民共和國(guó)道路交通管理?xiàng)l例規(guī)定:小汽車在城市街道上行駛速度不得超過(guò)70 km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路對(duì)面車速檢測(cè)儀正前方30 m,過(guò)了2 s,測(cè)得小汽車與車速檢測(cè)儀間距離為50 m,這輛小汽車超速了嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C,連接BC交拋物線的對(duì)稱軸于點(diǎn)E,D是拋物線的頂點(diǎn).

(1)求此拋物線的解析式;
(2)直接寫出點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P在第一象限內(nèi)的拋物線上,且S△ABP=4S△COE , 求P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣ x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)yk1x+6x軸、y軸分別交于點(diǎn)A、B兩點(diǎn),與正比例函數(shù)yk2x交于點(diǎn)D2,2

1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;

2)若點(diǎn)Pmm)為直線yk2x上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)D重合),點(diǎn)Q在一次函數(shù)yk1x+6的圖象上,PQy軸,當(dāng)PQOA時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=1,BC= .將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)至矩形AB′C′D′,使得點(diǎn)B′恰好落在對(duì)角線BD上,連接DD′,則DD′的長(zhǎng)度為(
A.
B.
C. +1
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20173月起,成都市中心城區(qū)居民用水實(shí)行以戶為單位的三級(jí)階梯收費(fèi)辦法:

I級(jí):居民每戶每月用水18噸以內(nèi)含18噸每噸收水費(fèi)a元;

第Ⅱ級(jí):居民每戶每月用水超過(guò)18噸但不超過(guò)25噸,未超過(guò)18噸的部分按照第Ⅰ級(jí)標(biāo)準(zhǔn)收費(fèi),超過(guò)部分每噸收水費(fèi)b元;

第Ⅲ級(jí):居民每戶每月用水超過(guò)25噸,未超過(guò)25噸的部分按照第I、Ⅱ級(jí)標(biāo)準(zhǔn)收費(fèi),超過(guò)部分每噸收水費(fèi)c元.

設(shè)一戶居民月用水x噸,應(yīng)繳水費(fèi)為y元,yx之間的函數(shù)關(guān)系如圖所示

1)根據(jù)圖象直接作答:a   ,b   ;

2)求當(dāng)x≥25時(shí)yx之間的函數(shù)關(guān)系;

3)把上述水費(fèi)階梯收費(fèi)辦法稱為方案①,假設(shè)還存在方案②:居民每戶月用水一律按照每噸4元的標(biāo)準(zhǔn)繳費(fèi),請(qǐng)你根據(jù)居民每戶月用水量的大小設(shè)計(jì)出對(duì)居民繳費(fèi)最實(shí)惠的方案.(寫出過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知3×9x×81321,求x的值;

2)已知am2an5,求①am+n的值;②a3m4n的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案