【題目】小明將如圖兩水平線l1、l2的其中一條當(dāng)成x軸,且向右為正方向;兩條直線l3、l4的其中一條當(dāng)成y軸,且向上為正方向,并在此坐標(biāo)平面中畫出二次函數(shù)y=ax2﹣2a2x+1的圖象,則( 。
A.l1為x軸,l3為y軸B.l2為x軸,l3為y軸
C.l1為x軸,l4為y軸D.l2為x軸,l4為y軸
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,矩形ABCD中,E是AD的中點(diǎn),以點(diǎn)E直角頂點(diǎn)的直角三角形EFG的兩邊EF,EG分別過點(diǎn)B,C,∠F=30°.
(1)求證:BE=CE
(2)將△EFG繞點(diǎn)E按順時(shí)針方向旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)到EF與AD重合時(shí)停止轉(zhuǎn)動(dòng).若EF,EG分別與AB,BC相交于點(diǎn)M,N.(如圖2)
①求證:△BEM≌△CEN;
②若AB=2,求△BMN面積的最大值;
③當(dāng)旋轉(zhuǎn)停止時(shí),點(diǎn)B恰好在FG上(如圖3),求sin∠EBG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知直線y=-2x+4與x軸、y軸分別交于點(diǎn)A、C,以O(shè)A、OC為邊在第一象限內(nèi)作長(zhǎng)方形OABC.
(1)求點(diǎn)A、C的坐標(biāo);
(2)將△ABC對(duì)折,使得點(diǎn)A的與點(diǎn)C重合,折痕交AB于點(diǎn)D,求直線CD的解析式(圖②);
(3)在坐標(biāo)平面內(nèi),是否存在點(diǎn)P(除點(diǎn)B外),使得△APC與△ABC全等?若存在,請(qǐng)直接寫出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明家所在居民樓的對(duì)面有一座大廈AB,高為74米,為測(cè)量居民樓與大廈之間的距離,小明從自己家的窗戶C處測(cè)得大廈頂部A的仰角為37°,大廈底部B的俯角為48°.
(1)求∠ACB的度數(shù);
(2)求小明家所在居民樓與大廈之間的距離.(參考數(shù)據(jù):sin37°≈,cos37°≈,tan37°≈,sin48°≈,cos48°≈,tan48°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交軸于、兩點(diǎn),經(jīng)過點(diǎn),交軸于點(diǎn).
(1)求拋物線的解析式及點(diǎn)的坐標(biāo);
(2)求的面積;
(3)若點(diǎn)在直線上,點(diǎn)在平面上,是否存在這樣的點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019 年某市豬肉售價(jià)逐月上漲,每千克豬肉的售價(jià)(元)與月份(,且為整數(shù))之間滿足一次函數(shù)關(guān)系:,每千克豬肉的成本(元)與月份(,且為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為元,月份成本為元.
(1)求與之間的函數(shù)關(guān)系式;
(2)設(shè)銷售每千克豬肉所獲得的利潤(rùn)為 (元),求與之間的函數(shù)關(guān)系式,哪個(gè)月份銷售每千克豬肉所獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過點(diǎn),射線與反比例函數(shù)的圖象的另一個(gè)交點(diǎn)為,射線與軸交于點(diǎn),與軸交于點(diǎn)軸, 垂足為.
求反比例函數(shù)的解析式;
求的長(zhǎng)
在軸上是否存在點(diǎn),使得與相似,若存在,請(qǐng)求出滿足條件點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠ABC=90°,AB=BC=2,現(xiàn)將Rt△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°得到△AED,則圖中陰影部分的面積是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com