【題目】已知二次函數(shù)y=a(x﹣1)2+4的圖象經(jīng)過點(﹣1,0).
(1)求這個二次函數(shù)的解析式;
(2)判斷這個二次函數(shù)的開口方向,對稱軸和頂點坐標(biāo).
【答案】(1)y=﹣(x﹣1)2+4;(2)拋物線開口向下,頂點坐標(biāo)為(1,4),對稱軸為直線x=1.
【解析】
(1)把(﹣1,0)代入二次函數(shù)解析式,求得a即可.
(2)根據(jù)二次函數(shù)的圖象的開口方向由a決定,開口向上,,開口向下;對稱軸為直線,頂點坐標(biāo)為,即可得出.
(1)把(﹣1,0)代入二次函數(shù)解析式得:4a+4=0,即a=﹣1,
則函數(shù)解析式為y=﹣(x﹣1)2+4;
(2) 根據(jù)二次函數(shù)的圖象的開口方向由a決定,開口向上,,開口向下;∵a=﹣1<0,∴拋物線開口向下;
對稱軸為直線,頂點坐標(biāo)為,
對稱軸為直線x=1,頂點坐標(biāo)為(1,4).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,扇形OAB中,∠AOB=90°.P為弧AB上的一點,過點P作PC⊥OA,垂足為C,PC與AB交于點D.若PD=2,CD=1,則該扇形的半徑長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某賓館有50個房間供游客居住,當(dāng)每個房間定價120元時,房間會全部住滿,當(dāng)每個房間每天的定價每增加10元時,就會有一個房間空閑如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設(shè)每個房間定價增加10x元為整數(shù).
直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式.
設(shè)賓館每天的利潤為W元,當(dāng)每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
某日,賓館了解當(dāng)天的住宿的情況,得到以下信息:①當(dāng)日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,專家預(yù)測,2019年我市豬肉售價將逐月上漲,每千克豬肉的售價y1(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足一次函數(shù)關(guān)系,如下表所示.每千克豬肉的成本y2(元)與月份x(1≤x≤12,且x為整數(shù))之間滿足二次函數(shù)關(guān)系,且3月份每千克豬肉的成本全年最低,為9元,如圖所示.
月份x | … | 3 | 4 | 5 | 6 | … |
售價y1/元 | … | 12 | 14 | 16 | 18 | … |
(1)求y1與x之間的函數(shù)關(guān)系式.
(2)求y2與x之間的函數(shù)關(guān)系式.
(3)設(shè)銷售每千克豬肉所獲得的利潤為w(元),求w與x之間的函數(shù)關(guān)系式,哪個月份銷售每千克豬肉所第獲得的利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點P、D分別是BC、AC邊上的點,且∠APD=∠B.
(1)求證:AC·CD=CP·BP;
(2)若AB=10,BC=12,當(dāng)PD∥AB時,求BP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB⊥BD,sinA=,將ABCD放置在平面直角坐標(biāo)系中,且AD⊥x軸,點D的橫坐標(biāo)為1,點C的縱坐標(biāo)為3,恰有一條雙曲線y=(k>0)同時經(jīng)過B、D兩點,則點B的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對角線交于點O,點E、F分別在AB、BC上(AE<BE),
且∠EOF=90°,OE、DA的延長線交于點M,OF、AB的延長線交于點N,連接MN.
(1)求證:OM=ON;
(2)若正方形ABCD的邊長為6,OE=EM,求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,對角線AC , BD相交于點O,過點O作EF⊥AC,分別交射線AD與射線CB于點E和點F,連接CE,AF.
(1)求證:四邊形AECF是菱形.
(2)當(dāng)點分別在邊和上時,設(shè),菱形的面積是,求關(guān)于的函數(shù)關(guān)系式.
(3)當(dāng)是等腰三角形時,求的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,科技小組準(zhǔn)備用材料圍建一個面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長為12m,設(shè)AD的長為m,DC的長為m。
(1)求與之間的函數(shù)關(guān)系式;
(2)根據(jù)實際情況,對于(1)式中的函數(shù)自變量能否取值為4m,若能,求出的值,若不能,請說明理由;
(3)若圍成矩形科技園ABCD的三邊材料總長不超過26m,材料AD和DC的長都是整米數(shù),求出滿足條件的所有圍建方案。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com