【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC.延長AD到E點,使DE=AB.連接CE.求∠E的度數(shù).
【答案】45°
【解析】
連接AC,首先根據(jù)四邊形的內(nèi)角和等于360°,結(jié)合已知條件求出∠ABC+∠ADC=180°,再利用同角的補角相等得到∠ABC=∠CDE,接下來依據(jù)“邊角邊”即可證得△ABC≌△EDC,再利用全等三角形的性質(zhì)求解即可.
證明:在連接AC.
四邊形ABCD中,∵∠BAD=∠BCD=90°,
∴∠ABC+∠ADC=180°,
又∵∠CDE+∠ADC=180°,
∴∠ABC=∠CDE,
在△ABC和△EDC中,,
∴△ABC≌△EDC(SAS),
∴∠BAC=∠CED,AC=EC,
∴∠EAC=∠CED,∴∠BAC=∠CAE=∠BAD=,
∴∠AEC=即∠E=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點A、B,與y軸交于點C,過點C作CD∥x軸,與拋物線交于點D,若OA=1,CD=4,則線段AB的長為( )
A.2
B.1
C.3
D.1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】只給定三角形的兩個元素,畫出的三角形的形狀和大小是不確定的,在下列給定的兩個條件上增加一個“AB=5cm”的條件后,所畫出的三角形的形狀和大小仍不能完全確定的是( 。
A. , B. ,
C. , D. ,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=4,C是⊙O上一點,連接OC.過點C作CD⊥AB,垂足為D,過點B作BM∥OC,在射線BM上取點E,使BE=BD,連接CE.
(1)當∠COB=60°時,直接寫出陰影部分的面積;
(2)求證:CE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個圖形中一共有6個小圓圈,第②個圖形中一共有9個小圓圈,第③個圖形中一共有12個小圓圈,…,按此規(guī)律排列,則第⑩個圖形中小圓圈的個數(shù)為( )
A. 24 B. 27 C. 30 D. 33
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)5000名九年級學(xué)生體育成績狀況,隨機抽取了若干名學(xué)生進行測試,將成績按A、B、C、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題
(1)在這次抽樣調(diào)查中,一共抽取了名學(xué)生;
(2)請把條形統(tǒng)計圖補充完整;
(3)請估計該地區(qū)九年級學(xué)生體育成績?yōu)锽的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動點(與點B,C不重合)連接AP,延長BC至點Q,使 CQ=CP,過點Q作QH⊥AP于點H,交AB于點M.
(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;
(2)在(1)的條件下,過點M作ME⊥QB于點E,試證明 PC 與 ME 之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴建部分中小學(xué),某縣計劃對A、B兩類學(xué)校進行改擴建,根據(jù)預(yù)算,改擴建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計劃改擴建A、B兩類學(xué)校共10所,改擴建資金由國家財政和地方財政共同承擔(dān).若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學(xué)校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com