如圖,拋物線軸于兩點(diǎn)(的左側(cè)),交軸于點(diǎn),頂點(diǎn)為。

(1)求點(diǎn)的坐標(biāo);
(2)求四邊形的面積;
(3)拋物線上是否存在點(diǎn),使得,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由。

(1) A(-1,0);B(3,0);C(0,3);(2)9;(3)存在這樣的點(diǎn)P,P點(diǎn)的坐標(biāo)為(,)或(,).

解析試題分析:(1)在拋物線的解析式中,令x=0可以求出點(diǎn)C的坐標(biāo),令x=0可以求出A、B點(diǎn)的坐標(biāo).
(2)過D作DE⊥AB,垂足為E,則四邊形ABDC的面積就是:
(3)根據(jù)條件判定△BCD是直角三角形,再依據(jù)求出.設(shè)P點(diǎn)坐標(biāo)為(m,-m2+2m+3),分兩種情況討論:(1)當(dāng)P點(diǎn)在x 軸上方時,(2)當(dāng)P點(diǎn)在x軸下方時,解直角三角形即可求出m的值,從而確定點(diǎn)P的坐標(biāo).
試題解析:(1)當(dāng)x=0時,y=-x2+2x+3=3;
當(dāng)y=0時,0=-x2
解得:x1=-1、x2=3;
故A(-1,0);B(3,0);C(0,3).
(2)
∴D點(diǎn)坐標(biāo)為(1,4)
過點(diǎn)D作DE⊥x軸于E

∴OE=1,DE=4
∴BE=OB-OE=2
,

(3)假設(shè)存在這樣的點(diǎn)P
過點(diǎn)C作CF⊥DE于F

∴CF=1,DF=1
∴∠DCF=45°,CD=
∵OC=3=OB,
∴∠CBO=45°,BC=
∵CF∥x軸
∴∠FCB=∠CBO=45°,
∴∠DCB=90°
在Rt△BCD中,

設(shè)P點(diǎn)坐標(biāo)為(m,-m2+2m+3),
過點(diǎn)P作PM⊥AB于M
當(dāng)P點(diǎn)在x軸上方時,PM=-m2+2m+3,BM=3-m
在Rt△PBM中,,即
(舍去)
∴P點(diǎn)坐標(biāo)為(
當(dāng)P點(diǎn)在x軸下方時,PM=-m2-2m-3,BM=3-m
在Rt△PBM中,,即
(舍去)
∴P點(diǎn)坐標(biāo)為(,
綜上,存在這樣的點(diǎn)P,P點(diǎn)的坐標(biāo)為(,)或(,
考點(diǎn): 二次函數(shù)綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

高科技發(fā)展公司投資500萬元,成功研制出一種市場需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷售過程中發(fā)現(xiàn):當(dāng)銷售單價定為100元時,年銷售量為20萬件;銷售單價每增加10元,年銷售量將減少1萬件,設(shè)銷售單價為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額一生產(chǎn)成本—投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不寫x的取值范圍);
(3)公司計(jì)劃,在第一年按年獲利最大確定銷售單價進(jìn)行銷售;到第二年年底獲利不低于1130萬元,請借助函數(shù)的大致圖象說明:第二年的銷售單價x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點(diǎn)(B在A的左側(cè)),頂點(diǎn)為C, 點(diǎn)D(1,m)在此二次函數(shù)圖象的對稱軸上,過點(diǎn)D作y軸的垂線,交對稱軸右側(cè)的拋物線于E點(diǎn).

(1)求此二次函數(shù)的解析式和點(diǎn)C的坐標(biāo);
(2)當(dāng)點(diǎn)D的坐標(biāo)為(1,1)時,連接BD、.求證:平分;
(3)點(diǎn)G在拋物線的對稱軸上且位于第一象限,若以A、C、G為頂點(diǎn)的三角形與以G、D、E為頂點(diǎn)的三角形相似,求點(diǎn)E的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,直線與x軸、y軸分別交于點(diǎn)A、C,經(jīng)過A、C兩點(diǎn)的拋物線與x軸的負(fù)半軸上另一交點(diǎn)為B,且tan∠CBO=3.

(1)求該拋物線的解析式及拋物線的頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是射線BD上一點(diǎn),且以點(diǎn)P、A、B為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,直線l:y=3x+3與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.把△AOB沿y軸翻折,點(diǎn)A落到點(diǎn)C,拋物線過點(diǎn)B、C和D(3,0).

(1)求直線BD和拋物線的解析式.
(2)若BD與拋物線的對稱軸交于點(diǎn)M,點(diǎn)N在坐標(biāo)軸上,以點(diǎn)N、B、D為頂點(diǎn)的三角形與△MCD相似,求所有滿足條件的點(diǎn)N的坐標(biāo).
(3)在拋物線上是否存在點(diǎn)P,使SPBD=6?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(﹣3,0),B(0,3),C(1,0).

(1)求此拋物線的解析式.
(2)點(diǎn)P是直線AB上方的拋物線上一動點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.
①動點(diǎn)P在什么位置時,△PDE的周長最大,求出此時P點(diǎn)的坐標(biāo);
②連接PA,以AP為邊作圖示一側(cè)的正方形APMN,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨之改變.
當(dāng)頂點(diǎn)M或N恰好落在拋物線對稱軸上時,求出對應(yīng)的P點(diǎn)的坐標(biāo).(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC的三個頂點(diǎn)坐標(biāo)分別為A(-4,0),B(1,0),C(-2,6).

(1)求經(jīng)過點(diǎn)A,B,C三點(diǎn)的拋物線解析式.
(2)設(shè)直線BC交y軸于點(diǎn)E,連結(jié)AE,求證:AE=CE;
(3)設(shè)拋物線與y軸交于點(diǎn)D,連結(jié)AD交BC于點(diǎn)F,求證:以A,B,F(xiàn)為頂點(diǎn)的三角形與△ABC相似,并求:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

永嘉縣綠色和特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中香菇遠(yuǎn)銷日本和韓國等地.上市時,外商李經(jīng)理按市場價格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據(jù)預(yù)測,香菇的市場價格每天每千克將上漲0.5元,但冷庫存放這批香菇時每天需要支出各種費(fèi)用合計(jì)340元,而且香菇在冷庫中最多保存110天,同時,平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為元,試寫出之間的函數(shù)關(guān)系式.
(2)李經(jīng)理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費(fèi)用)
(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線的頂點(diǎn)為Q,與軸交于A(-1,0)、B(5, 0)兩點(diǎn),與軸交于C點(diǎn).
 
(1)直接寫出拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點(diǎn),使得△的周長最小.請?jiān)趫D中畫出點(diǎn)的位置,并求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案