精英家教網(wǎng)把兩個(gè)含有45°角的直角三角板如圖放置,點(diǎn)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.試判斷AF和BE的位置關(guān)系,并說(shuō)明理由.
分析:先得出結(jié)論AF⊥BE,再根據(jù)題意利用SAS可證明∴△BEC≌△ADC,則∠EBC=∠DAC,由∠FDB=∠CDA是對(duì)頂角相等,∠BFD=∠ACD=90°即AF⊥BE.
解答:解:AF⊥BE,理由如下(1分)
∵△ECD和△BCA都是等腰Rt△,
∴EC=DC,BC=AC,
∠ECD=∠ACB=90°,(2分)
在△BEC和△ADC中,
EC=DC
∠ECB=∠DCA
BC=AC
,
∴△BEC≌△ADC(SAS),(5分)
∴∠EBC=∠DAC,(6分)
∵∠DAC+∠CDA=90°,
∠FDB=∠CDA,
∴∠EBC+∠FDB=90°,
∴∠BFD=90°,
即AF⊥BE.(8分)
點(diǎn)評(píng):本題考查了全等三角形的判定和性質(zhì),垂直的定義,是基礎(chǔ)知識(shí)要熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、把兩個(gè)含有45°角的大小不同的直角三角板如圖放置,點(diǎn)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.
說(shuō)明:AF⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)把兩個(gè)含有45°角的直角三角板如圖1放置,點(diǎn)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.求證:AF⊥BE.
(2)把兩個(gè)含有30°角的直角三角板如圖2放置,點(diǎn)精英家教網(wǎng)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.問(wèn)AF與BE是否垂直?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把兩個(gè)含有45°角的直角三角板如圖1放置,點(diǎn)D在BC上,連接BE、AD,AD的延長(zhǎng)線交于BE于點(diǎn)F.
(1)問(wèn):AD與BE在數(shù)量上和位置上分別有何關(guān)系?說(shuō)明理由.
(2)若將45°角換成30°如圖2,AD與BE在數(shù)量和位置上分別有何關(guān)系?說(shuō)明理由.
(3)若將圖2中兩個(gè)三角板旋轉(zhuǎn)成圖3、圖4、圖5的位置,則(2)中結(jié)論是否仍然成立,選擇其中一種圖形進(jìn)行說(shuō)明.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、把兩個(gè)含有45°角的直角三角板如圖放置,點(diǎn)D在AC上,連接AE、BD,試判斷AE與BD的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

把兩個(gè)含有45°角的直角三角板如圖放置,D在BC點(diǎn)上,連接BD、AD,AD的延長(zhǎng)線交BE于點(diǎn)F,求證:AF⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案