精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在矩形ABCD中,AB=8,BC=5,P是矩形內部一動點,且滿足∠PAB=PBC,則線段CP的最小值是_______

【答案】﹣4.

【解析】

連接OC與圓O交于點P,先證明點P在以AB為直徑的圓O上,再利用勾股定理求出OC即可.

∵∠ABC=90°,

∴∠ABP+∠PBC=90°,

∵∠PAB=PBC,

∴∠BAP+∠ABP=90°,

∴∠APB=90°,

OP=OA=OB(直角三角形斜邊中線等于斜邊一半),

∴點P在以AB為直徑的⊙O上,連接OC交⊙O于點P,此時PC最小,

∵在矩形ABCD中,AB=8,BC=5,

RTBCO中,∵∠OBC=90°,BC=5,OB=4,

OC=,

PC=OC﹣OP=﹣4.

PC最小值為﹣4.

故答案為:﹣4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,P是反比例函數y=圖象上一點,PM∥x軸交y軸于點M,MP=2,點Q的坐標為(4,0),連接PO、PQ,△OPM的面積為3,求該反比例函數的表達式是△OPQ的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某建筑物BC頂部有一旗桿AB,且點A、B、C在同一條直線上,小紅在D處觀測旗桿頂部A的仰角為47°,觀測旗桿底部B的仰角為42°已知點D到地面的距離DE為1.56m,EC=21m,求旗桿AB的高度和建筑物BC的高度(結果保留小數后一位).(參考數據:tan47°≈1.07,tan42°≈0.90)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,我們把橫、縱坐標均為整數的點叫做整點.已知反比例函數y=(m<0)與y=x2﹣4在第四象限內圍成的封閉圖形(包括邊界)內的整點的個數為2,則實數m的取值范圍為__

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB⊙O 的直徑,CD⊙O的一條弦,且CD⊥AB于點E

1)求證:∠BCO=∠D;

2)若CD=AE=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BD是⊙O的切線,B為切點,連接DO與⊙O交于點C,AB為⊙O的直徑,連接CA,若∠D=30°,O的半徑為4.

(1) 求∠BAC的大;

(2) 求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在梯形中,,點的中點,交于點,那么的面積比是____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線yax2bx3的圖象與x軸交于AB兩點,與y軸交于點C,且點CD是拋物線上的一對對稱點

1】求拋物線的解析式

2】求點D的坐標,并在圖中畫出直線BD

3】求出直線BD的一次函數解析式,并根據圖象回答:當x滿足什么條件時,上述二次函數的值大于該一次函數的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的方程x2﹣2(k+1)x+k2=0有兩個實數根x1、x2

(1)求k的取值范圍;

(2)若x1+x2=3x1x2﹣6,求k的值.

查看答案和解析>>

同步練習冊答案