【題目】若二次函數(shù)y=x2﹣2x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+k=0的解一個(gè)為x1=3,則方程x2﹣2x+k=0另一個(gè)解x2=_____.
【答案】-1
【解析】
利用拋物線(xiàn)與x軸的交點(diǎn)問(wèn)題,利用關(guān)于x的一元二次方程x2-2x+k=0的解一個(gè)為x1=3得到二次函數(shù)y=x2-2x+k與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),然后利用拋物線(xiàn)的對(duì)稱(chēng)性得到二次函數(shù)y=x2-2x+k與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1,0),從而得到方程x2-2x+k=0另一個(gè)解.
解:∵關(guān)于x的一元二次方程x2﹣2x+k=0的解一個(gè)為x1=3,
∴二次函數(shù)y=x2﹣2x+k與x軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),
∵拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x=1,
∴二次函數(shù)y=x2﹣2x+k與x軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),
∴方程x2﹣2x+k=0另一個(gè)解x2=﹣1.
故答案為﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,點(diǎn)D是BC邊上的點(diǎn),CD=1,將△ABC沿直線(xiàn)AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)E處,若點(diǎn)P是直線(xiàn)AD上的動(dòng)點(diǎn),則△PEB的周長(zhǎng)的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線(xiàn)上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.
(1)求拋物線(xiàn)的表達(dá)式;
(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸為l,l與x軸的交點(diǎn)為D.在直線(xiàn)l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達(dá)式;
②求P點(diǎn)到直線(xiàn)BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線(xiàn)段OA繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到線(xiàn)段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)P,B兩點(diǎn),則k的值為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>
(1)
(2) - 2x=5
(3) x 2 -4x+2=0
(4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=75°,∠D=85°,則∠C= .
(2)已知:在“等對(duì)角四邊形”ABCD中,∠DAB=60°,∠ABC=90°,AB=4,AD=3.求對(duì)角線(xiàn)AC的長(zhǎng).
(3)已知:如圖2,在平面直角坐標(biāo)系xOy中,四邊形ABCD是“等對(duì)角四邊形”,其中A(﹣2,0)、C(2,0)、B(﹣1,﹣),點(diǎn)D在y軸上,拋物線(xiàn)y=ax2+bx+c(a<0)過(guò)點(diǎn)A、D,且當(dāng)﹣2≤x≤2時(shí),函數(shù)y=ax2+bx+c取最大值為3,求二次項(xiàng)系數(shù)a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD為⊙O的直徑,AD與BC相交于點(diǎn)E,且BE=CE.
(1)請(qǐng)判斷AD與BC的位置關(guān)系,并說(shuō)明理由;
(2)若BC=6,ED=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=與x軸交于A、B兩點(diǎn),△ABC為等邊三角形,∠COD=60°,且OD=OC.
(1)A點(diǎn)坐標(biāo)為 ,B點(diǎn)坐標(biāo)為 ;
(2)求證:點(diǎn)D在拋物線(xiàn)上;
(3)點(diǎn)M在拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)N在拋物線(xiàn)上,若以M、N、O、D為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q為CD上一個(gè)動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于點(diǎn)N,作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④ 為定值.其中一定成立的是
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com