【題目】若二次函數(shù)yx22x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x22x+k0的解一個(gè)為x13,則方程x22x+k0另一個(gè)解x2_____

【答案】-1

【解析】

利用拋物線(xiàn)與x軸的交點(diǎn)問(wèn)題,利用關(guān)于x的一元二次方程x2-2x+k=0的解一個(gè)為x1=3得到二次函數(shù)y=x2-2x+kx軸的一個(gè)交點(diǎn)坐標(biāo)為(30),然后利用拋物線(xiàn)的對(duì)稱(chēng)性得到二次函數(shù)y=x2-2x+kx軸的另一個(gè)交點(diǎn)坐標(biāo)為(-1,0),從而得到方程x2-2x+k=0另一個(gè)解.

解:∵關(guān)于x的一元二次方程x22x+k0的解一個(gè)為x13

∴二次函數(shù)yx22x+kx軸的一個(gè)交點(diǎn)坐標(biāo)為(3,0),

∵拋物線(xiàn)的對(duì)稱(chēng)軸為直線(xiàn)x1,

∴二次函數(shù)yx22x+kx軸的另一個(gè)交點(diǎn)坐標(biāo)為(﹣1,0),

∴方程x22x+k0另一個(gè)解x2=﹣1

故答案為﹣1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,點(diǎn)DBC邊上的點(diǎn),CD=1,將△ABC沿直線(xiàn)AD翻折,使點(diǎn)C落在AB邊上的點(diǎn)E處,若點(diǎn)P是直線(xiàn)AD上的動(dòng)點(diǎn),則△PEB的周長(zhǎng)的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知拋物線(xiàn)y=﹣x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)P是拋物線(xiàn)上在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且點(diǎn)P的橫坐標(biāo)為t.

(1)求拋物線(xiàn)的表達(dá)式;

(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸為l,lx軸的交點(diǎn)為D.在直線(xiàn)l上是否存在點(diǎn)M,使得四邊形CDPM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(3)如圖2,連接BC,PB,PC,設(shè)PBC的面積為S.

①求S關(guān)于t的函數(shù)表達(dá)式;

②求P點(diǎn)到直線(xiàn)BC的距離的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸,y軸上,頂點(diǎn)B在第一象限,AB=1.將線(xiàn)段OA繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到線(xiàn)段OP,連接AP,反比例函數(shù)(k≠0)的圖象經(jīng)過(guò)P,B兩點(diǎn),則k的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1)  

(2) - 2x5

(3) x 2 -4x+20

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做等對(duì)角四邊形

1)已知:如圖1,四邊形ABCD等對(duì)角四邊形,∠AC,∠A75°,∠D85°,則∠C   

2)已知:在等對(duì)角四邊形ABCD中,∠DAB60°,∠ABC90°,AB4AD3.求對(duì)角線(xiàn)AC的長(zhǎng).

3)已知:如圖2,在平面直角坐標(biāo)系xOy中,四邊形ABCD等對(duì)角四邊形,其中A(﹣2,0)、C2,0)、B(﹣1,﹣),點(diǎn)Dy軸上,拋物線(xiàn)yax2+bx+ca0)過(guò)點(diǎn)A、D,且當(dāng)﹣2≤x≤2時(shí),函數(shù)yax2+bx+c取最大值為3,求二次項(xiàng)系數(shù)a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙OAD為⊙O的直徑,ADBC相交于點(diǎn)E,且BECE

1)請(qǐng)判斷ADBC的位置關(guān)系,并說(shuō)明理由;

2)若BC6,ED2,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)yx軸交于A、B兩點(diǎn),△ABC為等邊三角形,∠COD60°,且ODOC

1A點(diǎn)坐標(biāo)為   B點(diǎn)坐標(biāo)為   ;

2)求證:點(diǎn)D在拋物線(xiàn)上;

3)點(diǎn)M在拋物線(xiàn)的對(duì)稱(chēng)軸上,點(diǎn)N在拋物線(xiàn)上,若以M、N、OD為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)一定的正方形ABCD,Q為CD上一個(gè)動(dòng)點(diǎn),AQ交BD于點(diǎn)M,過(guò)M作MN⊥AQ交BC于點(diǎn)N,作NP⊥BD于點(diǎn)P,連接NQ,下列結(jié)論:①AM=MN;②MP=BD;③BN+DQ=NQ;④ 為定值.其中一定成立的是

A. ①②③ B. ①②④ C. ②③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案