(2013•恩施州)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線(xiàn)于點(diǎn)G.
(1)求證:CG是⊙O的切線(xiàn).
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長(zhǎng).
分析:(1)連結(jié)OC,由C是劣弧AE的中點(diǎn),根據(jù)垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線(xiàn)的判定定理即可得到結(jié)論;
(2)連結(jié)AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
(3)在Rt△ADF中,由于∠DAF=30°,F(xiàn)A=FC=2,根據(jù)含30度的直角三角形三邊的關(guān)系得到DF=1,AD=
3
,再由AF∥CG,根據(jù)平行線(xiàn)分線(xiàn)段成比例得到DA:AG=DF:CF
然后把DF=1,AD=
3
,CF=2代入計(jì)算即可.
解答:(1)證明:連結(jié)OC,如圖,
∵C是劣弧AE的中點(diǎn),
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切線(xiàn);

(2)證明:連結(jié)AC、BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;

(3)解:在Rt△ADF中,∠DAF=30°,F(xiàn)A=FC=2,
∴DF=
1
2
AF=1,
∴AD=
3
DF=
3

∵AF∥CG,
∴DA:AG=DF:CF,即
3
:AG=1:2,
∴AG=2
3
點(diǎn)評(píng):本題考查了圓的切線(xiàn)的判定:過(guò)半徑的外端點(diǎn)與半徑垂直的直線(xiàn)為圓的切線(xiàn).也考查了圓周角定理、垂徑定理和等腰三角形的判定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)如圖所示,在直角坐標(biāo)系中放置一個(gè)邊長(zhǎng)為1的正方形ABCD,將正方形ABCD沿x軸的正方向無(wú)滑動(dòng)的在x軸上滾動(dòng),當(dāng)點(diǎn)A離開(kāi)原點(diǎn)后第一次落在x軸上時(shí),點(diǎn)A運(yùn)動(dòng)的路徑線(xiàn)與x軸圍成的面積為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)函數(shù)y=
3-x
x+2
的自變量x的取值范圍是
x≤3且x≠-2
x≤3且x≠-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)今年參加恩施州初中畢業(yè)學(xué)業(yè)考試的考試約有39360人,請(qǐng)將數(shù)39360用科學(xué)記數(shù)法表示為(保留三位有效數(shù)字)( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)如圖所示,在平行四邊形ABCD中,AC與BD相交于點(diǎn)O,E為OD的中點(diǎn),連接AE并延長(zhǎng)交DC于點(diǎn)F,則DF:FC=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案